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ABSTRACT
We present a technique to mine explicit information flow
specifications from concrete executions. These specifications
can be consumed by a static taint analysis, enabling static
analysis to work even when method definitions are missing
or portions of the program are too difficult to analyze stat-
ically (e.g., due to dynamic features such as reflection). We
present an implementation of our technique for the Android
platform. When compared to a set of manually written spec-
ifications for 309 methods across 51 classes, our technique
is able to recover 96.36% of these manual specifications and
produces many more correct annotations that our manual
models missed. We incorporate the generated specifications
into an existing static taint analysis system, and show that
they enable it to find additional true flows. Although our
implementation is Android-specific, our approach is appli-
cable to other application frameworks.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; D.2.5 [Software Engineering]: Testing and
Debugging—Tracing

General Terms
Experimentation, Algorithms, Verification

Keywords
Dynamic analysis; specification mining; information flow

1. INTRODUCTION
Scaling a precise and sound static analysis to real-world

software is challenging, especially for software written in
modern object-oriented languages such as Java. Typically
such software builds upon large and complex frameworks
(e.g., Android, Apache Struts, and Spring). For soundness
and precision, any analysis of such software entails analysis
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of the framework. However, there are at least four problems
that make the analysis of framework code challenging. First,
a very precise analysis of a framework may not scale because
most frameworks are very large. Second, framework code
may use dynamic language features, such as reflection in
Java, which are difficult to analyze statically. Third, frame-
works typically use non-code artifacts (e.g., configuration
files) that have special semantics that must be modeled for
accurate results. Fourth, frameworks usually build on ab-
stractions written in lower-level languages for which a com-
prehensive static analysis may be unavailable (e.g., Java’s
native methods). Such foreign functions appear as missing
code to the static analysis of the higher-level language.

One approach to address these problems is to use specifi-
cations (also called models) for framework classes and meth-
ods. From a high-level, a specification reflects those effects of
the framework code on the program state that are relevant to
the analysis. The analysis can then use these specifications
instead of analyzing the framework. Use of specifications
can improve the scalability of an analysis dramatically be-
cause specifications are usually much smaller than the code
they specify. In addition to scalability, use of specifications
can also improve the precision of the analysis because speci-
fications are also simpler (e.g., no dynamic language features
or non-code artifacts) than the corresponding code.

Although use of specifications can improve both scalabil-
ity and precision of an analysis, obtaining specifications is a
challenging problem in itself. If specifications are computed
by static analysis of the framework code, the aforementioned
problems arise. An alternative approach is to manually
write specifications. This approach is not impractical be-
cause once the specifications for a framework are written,
those specifications can be used to analyze any piece of soft-
ware that uses that framework. However, writing and main-
taining specifications manually for a large framework is still
laborious and susceptible to human error. Dynamic anal-
ysis, which observes concrete executions of a program and
generalizes to produce specifications, represents an attrac-
tive third alternative. Mining specifications from execution
traces, to be consumed by a static analysis, is not a novel
idea. For example, some techniques produce control-flow
specifications (e.g., [2, 50, 34, 20, 36]), while others discover
general pre- and post-conditions on methods (e.g., Daikon
[15]). However, we are interested in using information-flow
specifications computed through dynamic analysis as mod-
els to be consumed by a static analysis. This is a problem
that, to our knowledge, has not been previously explored.
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// Set−up ob j e c t s
SocketChannel socket = . . . ;
CharBuffer bu f f e r = . . . ;
CharsetEncoder encoder =

Charset . forName ( ”UTF−8” ) . newEncoder ( ) ;
TelephonyManager tMgr = . . . ;
// Leak phone number :
St r ing mPhoneNumber = tMgr . getLine1Number ( ) ;
CharBuffer b1 = bu f f e r . put (mPhoneNumber , 0 , 1 0 ) ;
ByteBuffer by t ebu f f e r = encoder . encode ( b1 ) ;
socket . wr i t e ( by t ebu f f e r ) ;

Figure 1: Leak phone number to Internet

Dynamic analysis has been used in the past to compute
dependence summaries of methods to speed up a whole-
program dynamic dependence analysis [41]. Such summaries
are related, but not identical, to the information flow specifi-
cations described in this paper (see Section 6). Like previous
techniques, we mine explicit1 information flow specifications
by executing each method for which we wish to construct a
model and recording a trace of all operations performed by
the method. Using this trace, we reconstruct the view the
method has of the structures in the heap reachable from
the method’s arguments. We apply a specialized form of
dynamic taint tracking to capture the information flows be-
tween locations inside those structures. We then lift these
dynamic information flows to a static signature summarizing
the flows between a method’s arguments or between an argu-
ment and the return value. This lifting adds an abstraction
step that is not standard in previous work, but is important
to our technique. We merge the flows mined from different
executions of a method to produce its overall specification.

We evaluate our generated specifications in three ways.
First, we compare them to a set of specifications which were
manually written over a period of two years. Our technique
independently discovers 96.36% of the manual models and
finds many additional correct specifications missed by hu-
man model writers. Second, we give our specifications as
models for a static taint analysis. The specifications allow
the analysis to discover over 31% additional flows, many
of which we found to be true positives, while preserving a
98.12% recall compared to the same tool using only manual
models. Third, we show that we are able to mine specifica-
tions from only a few executions of a method (average: 1.38)
that are as good as those mined from large sets of traces.

We begin by giving a motivating example for the value of
our technique (Section 2) and describe the overall architec-
ture of our implementation (Section 3). We then present our
specification mining technique in detail (Section 4). Next,
we describe our empirical evaluation and present our results
(Section 5). Finally, we summarize related work (Section 6)
and conclude (Section 7).

2. MOTIVATION
As part of a long term research project to improve mal-

ware detection techniques for mobile platforms, our group
has developed STAMP. STAMP is a hybrid static/dynamic
program analysis tool for Android applications: The core
analysis performed by STAMP is a static taint analysis that
aims to detect privacy leaks. Given the code fragment in

1Explicit information flow considers only data-flow depen-
dencies, unlike control-flow based implicit information flow.

Table 1: Specifications for platform methods
TelephonyManager.getLine1Number() $PHONE NUM → return

CharBuffer.put(String,int,int) arg#1 → this
this → return
arg#1 → return

CharsetEncoder.encode(CharBuffer) arg#1 → return

SocketChannel.write(ByteBuffer) arg#1 → !INTERNET

Figure 1, STAMP should infer that the device’s phone num-
ber (retrieved by getLine1Number()) is sent to the Internet
(using socket) and flag it as a potential leak.

STAMP performs whole-program analysis of the Android
application code and any libraries bundled into its installer
(.apk file). However, because of the challenges discussed in
Section 1, STAMP does not directly analyze the Android
platform’s libraries. In Figure 1, STAMP’s static analy-
sis component has no way of inspecting the behavior of
tMgr.getLine1Number(), buffer.put(), encoder.encode()
or socket.write(). The simplest solution to this problem
is to manually write a specification of the information flow
properties of each platform method. These specifications
can then be loaded by the static analysis and assumed to
be an accurate representation of the corresponding meth-
ods. This is the approach we adopted for early versions of
STAMP. Table 1 shows the specifications for the methods in
Figure 1. The notation is as follows:

a→ b indicates that there is a possible flow from a to b.
Whatever information was accessible from a before the
call is now potentially accessible from b after the call.
If a is a reference, the information accessible from a in-
cludes all objects transitively reachable through other
object references in fields.

this is the instance object for the modeled method.

return is the return value of the method.

arg#i is the i-th positional argument of the method. For
a static method, argument indices begin at 0. For in-
stance methods, arg#0 is an alias for this and posi-
tional arguments begin with arg#1.

$SOURCE is a source of information flow and represents a
resource, external to the program, from which the API
method reads some sensitive information (e.g. $CON-

TACTS, $LOCATION, $FILE).

!SINK is an information sink and represents a location out-
side of the program to which the information flows (e.g.
!INTERNET, !FILE).

Given the specifications in Table 1, STAMP can track the
flow of sensitive information from $PHONE_NUM—through pa-
rameters and return values—to !INTERNET, via static anal-
ysis of the code in Figure 1.

Over a period of two years, we produced a large set of
manually-written models. Generating these models was a
non-trivial task, as it required running STAMP on various
Android applications, discovering that it failed to find some
flows, figuring out the platform methods involved in break-
ing the static flow path and reading the Android documenta-
tion before finally writing a model for each missing method.

In the rest of this paper we describe a technique for au-
tomatically mining explicit information flow specifications
between the parameters (this, arg#i) and return values of
arbitrary platform methods.
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Figure 2: Architecture of Droidrecord/Modelgen

3. ARCHITECTURAL OVERVIEW
Figure 2 shows an architecture diagram of our system2.

The first component, Droidrecord, takes binary libraries (.jar)
and application archives (.apk) in their compiled form as
Android’s DEX bytecode. Droidrecord inserts a special log-
ger class into every executable. Using the Soot Java Op-
timization Framework [49] with its Dexpler [7] DEX fron-
tend, Droidrecord modifies each method to use this logger
to record the results of every bytecode operation performed.
We call each such operation an event and the sequence of all
events in the execution of a program is a trace.

Once instrumented, the modified Android libraries are put
together into a full Android system image that can be loaded
into any standard Android emulator. For specification min-
ing, we capture the traces generated by running the test
suite for the platform methods we wish to model. In par-
ticular, we use the Android Compatibility Test Suite (CTS)
[22]. We consider this kind of test suite as a type of in-
formal specification that is available for many cases of real
world systems. Good test suites include examples of method
calls which capture the desired structure of the arguments
and exercise edge-cases, in a way that, say, executing the
method with randomly selected arguments, does not.

Running the instrumented tests over the instrumented
system image produces a collection of traces. Modelgen is
the component of our system that analyzes these traces off-
line and generates explicit information flow specifications.

Droidrecord Instrumentation. Since events are recorded
to the device file system during the instrumented code’s ex-
ecution, it is important that their representation be com-
pact. A compact representation reduces the slowdown re-
sulting from performing many additional disk writes as the
instrumented code executes. Controlling this slowdown is
important, since the Android platform monitors processes
for responsiveness and automatically terminates those which
take too long to respond [23].

Droidrecord generates a template file (.template) contain-
ing all the information for each event that can be determined
statically. The instrumented code stores only a number iden-
tifying the event in the template file and those values of the
event that are only known at runtime. As an example, con-
sider a single method call operation, shown below in Soot’s
internal bytecode format (slightly edited for brevity):

2The source code for our implementation
and all related artifacts can be found at
https://bitbucket.org/lazaro clapp/droidrecord

$r5 = v invoke $r4 .<St r ingBu i lde r . append ( int )>( i 0 ) ;

When encountering this instruction, Droidrecord outputs
the following event template into its .template file, including
a unique template identifier:

17533 : [ MethodCallRecord{Thread : ,
Name : <java . lang . S t r ingBu i lde r . append ( int )> ,
At : [ . . . ] ,
Parameters : [ obj : S t r ingBu i lde r : , int : ] ,
ParameterLocals : [ $r4 , i 0 ] ,
Height : int : } ]

The bytecode is then instrumented to record the identifier,
followed by the runtime values of the method’s parameters:

s t a t i c i n vok e <TraceRecorder . recordEvent ( long )>(17533L ) ;
s t a t i c i n vok e <TraceRecorder . writeThreadId () >() ;
s t a t i c i n vok e <TraceRecorder . wr i teObject Id ( Object )>( r4 ) ;
s t a t i c i n vok e <TraceRecorder . wr i te ( int )>( i 0 ) ;
$r5 = v invoke $r4 .<St r ingBu i lde r . append ( int )>( i 0 ) ;

When reading the trace, these values are plugged into the
placeholder positions (‘ ’ above) of the event template. For
some events (simple assignments, arithmetic operations, etc)
all the values can be inferred statically as a simple function
of the values of previous events. These events generate event
templates but incur no dynamic recording overhead.

Modelgen Trace Extraction. After tests are run and
traces extracted from the emulator, they are first pre-processed
and combined with the static information in the .template
file. The result is a sequential stream of events for each
method invocation; we write (m : i) for the ith invocation
of method m. Calls made by (m : i) to other methods are
included in this stream, together with all the events and
corresponding calls within those other method invocations.
Spawning a new thread is an exception: events happening
in a different thread are absent from the stream for (m : i),
but appear in the streams for enclosing method invocations
in the new thread. This separation may break flows that
involve operations of multiple threads and is a limitation of
our implementation. We did not find any cases where a more
precise tracking of explicit information flow across threads
would have made a difference in our experimental results.

4. SPECIFICATION MINING
To explain Modelgen’s core model generation algorithm,

we describe its behavior on a single invocation subtrace T(m:i),
which is the sequence of events in the trace corresponding
to method invocation (m : i). Recall T(m:i) includes the in-
vocation subtraces for all method invocations called from m
during invocation (m : i), including any recursive calls to m.
We now describe a simplified representation of T(m:i) (Sec-
tion 4.1) and give its natural semantics (Section 4.2), that is,
the meaning of each event in the subtrace with respect to the
original program execution. Modelgen analyzes an invoca-
tion subtrace by processing each event in order and updating
its own bookkeeping structures. We represent this process
with a non-standard semantics: the modeling semantics of
the subtrace (Section 4.3). After Modelgen finishes scanning
T(m:i), interpreting it under the modeling semantics, it saves
the resulting specification which can then be combined with
the specifications for other invocations of m (Section 4.4).

4.1 Structure of a Trace
Figure 3 gives a grammar for the structure of traces, con-

sisting of a sequence of events. Events refer to constant
primitive values, field or method labels, and variables. The
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T ::= e∗ (trace)
e ∈ event ::= x = pv (literal load)

| x = newObj (new object)
| x = y (variable copy)
| x = y � z (binary op)
| x = y.f (load)
| x.f = y (store)
| x = m(y) (call)
| return x (return)
| throw x (throw exception)
| catch x = a (caught exception)

pv ∈ Primitive V alue � ∈ BinOp
a ∈ Address r ∈ Rec = {f : v}
x, y, z ∈ V ar ρ ∈ Env : V ar ⇀ V alue
f ∈ Field h ∈ Heap : Address ⇀ Rec
m ∈Method

Figure 3: Structure of a trace

symbol � stands for binary operations between primitive val-
ues. Objects are represented as records mapping field names
to values, which might be either addresses or primitive val-
ues. This grammar is similar to that of a 3-address byte-
code representing Java operations. However, it represents
not static program structure, but the sequence of opera-
tions occurring during a concrete program run, leading to
the following characteristics:

1. Conditional (if, switch) and loop (for, while) op-
erations are omitted and unnecessary; the events in
T represent a single path through the program. The
predicates inside conditionals are still evaluated, usu-
ally as binary operations.

2. The values of array indices in recorded array accesses
are concrete, which allows us to treat array accesses
as we would object field loads and stores (e.g., a[i]
becomes a.i, and note i is a concrete value).

3. For each method call event x = m1(y) in T(m:i) there
is a unique invocation subtrace of the form T(m1:j) =
fun(z){var x; e; ef} where ef is a return or throw
event and x is a list of all variable names used locally
within the invocation. Again, since we cover only one
path through m for each invocation, invocation sub-
traces may have at most one return event and must
end with a return or throw event.

We avoid modeling static fields explicitly by representing
them as fields of a singleton object for each class.

4.2 Natural Semantics of a Subtrace
Figure 4 gives a natural semantics for executing the pro-

gram path represented by an invocation subtrace. Under-
standing these standard semantics makes it easier to un-
derstand the custom semantics used by Modelgen to mine
specifications, which extend the natural semantics. The nat-
ural semantics of a subtrace are similar but not identical to
those of Java bytecode. The differences arise from the fact
that subtrace semantics represent a single execution path.

During subtrace evaluation, an environment ρ maps vari-
able names to values. A heap h maps memory addresses to
object records. Given a tuple 〈h, ρ, e〉 representing event e
under heap h and environment ρ, the operator ↓ represents
the evaluation of e in the given context and produces a new
tuple 〈h′, ρ′〉 containing a new heap and a new environment.

〈h, ρ, x = pv〉 ↓ 〈h, ρ[x→ pv]〉
(LIT)

a /∈ dom(h)

〈h, ρ, x = newObj〉 ↓ 〈h[a→ {}], ρ[x→ a]〉
(NEW)

ρ(y) = v

〈h, ρ, x = y〉 ↓ 〈h, ρ[x→ v]〉
(ASSIGN)

ρ(y) = pv1 ρ(z) = pv2 pv1 � pv2 = pv3

〈h, ρ, x = y � z〉 ↓ 〈h, ρ[x→ pv3]〉
(BINOP)

ρ(y) = a h(a) = r r(f) = v

〈h, ρ, x = y.f〉 ↓ 〈h, ρ[x→ v]〉
(LOAD)

ρ(x) = a h(a) = r ρ(y) = v r
′
= r[f → v]

〈h, ρ, x.f = y〉 ↓ 〈h[a→ r
′
], ρ〉

(STORE)

m = fun(z1, ..., zn){var x′; e; return y
′}

∀i ρ(yi) = vi ρ
′
(y
′
) = v

′

〈h, [z1 → v1, ..., zn → vn, x′ → undef ], e〉↓〈h′, ρ′〉
〈h, ρ, x = m(y1, ..., yn)〉 ↓ 〈h′, ρ[x→ v

′
]〉

(INV)

〈hi, ρi, ei〉 ↓ 〈hi+1, ρi+1〉
〈h0, ρ0, e0; . . . ; en−1〉↓〈hn, ρn〉

(SEQ)

Figure 4: Natural semantics

The operator ↓ represents the evaluation of a sequence of
events which consists of evaluating each event (↓) under the
heap and environment resulting from the evaluation of the
previous event. The rules in Figure 4 describe the behav-
ior of ↓ and ↓ for different events and their necessary pre-
conditions. We omit the rules for handling exceptions since
they do not add significant new ideas with respect to our
specification mining technique and exception propagation
complicates both the natural and modeling semantics.

We now consider how the natural semantics represent the
evaluation of the following example subtrace fragment which
increments a counter at x.f :

t ::= y = x.f ; z = 1;w = y + z;x.f = w

Assuming x contains the address a (i.e., ρ(x) = a) of heap
record r = {f : 0} (i.e., h(a) = r), LOAD gives us:

〈h, ρ, y = x.f〉 ↓ 〈h, ρ[y → 0]〉

Applying LIT, BINOP and STORE, respectively, we get:

〈h, ρ[y → 0], z = 1〉 ↓ 〈h, ρ[y → 0; z → 1]〉

〈h, ρ[y → 0; z → 1], w = y + z〉 ↓ 〈h, ρ[y → 0; z → 1;w → 1]〉

〈h, ρ[...;w → 1], x.f = w〉 ↓ 〈h[a→ {f : 1}], ρ[...;w → 1]〉

Using those evaluations for each expression, SEQ gives the
full evaluation of the fragment as

〈h, ρ, t〉↓〈h[a→ {f : 1}], ρ[y → 0; z → 1;w → 1]〉

where, in addition to some changes to the environment, field
f of record r in the heap has been incremented by one.

4.3 Modeling Semantics of a Subtrace
To obtain the information flow facts required to construct

our specifications, not only are we interested in tracking in-
formation flow through the portion of the heap reachable
from the arguments and return value of m, but we also
want to “lift” these flows so that they refer exclusively to
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l = new loc() c = new color()

〈h, ρ,L ,C,G,D, x = pv〉 ↓
〈h, ρ[x→ pv],L [x→ l],C[l→ {c}],G,D〉

(mLIT)

a /∈ dom(h) l = new loc() c = new color()

〈h, ρ,L ,C,G,D, x = newObj〉 ↓
〈h[a→ {}], ρ[x→ a],L [x→ l],C[l→ {c}],G,D〉

(mNEW)

ρ(y) = v L (y) = l

〈h, ρ,L ,C,G,D, x = y〉 ↓
〈h, ρ[x→ v],L [x→ l],C,G,D〉

(mASSIGN)

ρ(y) = pv1 ρ(z) = pv2 pv1 � pv2 = pv3
L (y) = l1 L (z) = l2 l3 = new loc()

C = C(l1) ∪ C(l2)
〈h, ρ,L ,C,G,D, x = y � z〉 ↓

〈h, ρ[x→ pv3],L [x→ l3],C[l3 → C],G,D〉

(mBINOP)

ρ(y) = a h(a) = r r(f) = v
L (a) = l1 L (y, f) = l2

C = D(a, f)?C(l2) : C(l1) ∪ C(l2)
〈h, ρ,L ,C,G,D, x = y.f〉 ↓

〈h, ρ[x→ v],L [x→ l2],C[l2 → C],G,D〉

(mLOAD)

ρ(x) = a h(a) = r ρ(y) = v r
′
= r[f → v]

L (y) = l1 L (a) = l2
G
′
= G+ {c1 → c2|∀c1 ∈ C(l1), c2 ∈ C(l2)}

〈h, ρ,L ,C,G,D, x.f = y〉 ↓
〈h[a→ r

′
], ρ,L ,C,G

′
,D[(a, f)→ True]〉

(mSTORE)

m = fun(z1, ..., zn){var x′; e; return y
′}

ρm = [z1 → v1, ..., zn → vn, x′ → undef ]

Lm = L [z1 → L (y1), ..., zn → L (yn), x′ → new loc()]

〈h, ρm,Lm,C,G,D, e〉↓〈h′, ρ′,L ′,C′,G′,D′, t〉
L ′′ = L ′[z1 → L (z1), ..., zn → L (zn), x′ → L (x′)]

∀i ρ(yi) = vi ρ
′
(y
′
) = v

′ L (y
′
) = l

〈h, ρ,L ,C,G,D, x = m(y1, ..., yn)〉 ↓
〈h′, ρ[x→ v

′
],L ′′[x→ l],C

′
,G
′
,D
′〉

(mINV)

〈hi, ρi,Li,Ci,Gi,Di, ei〉 ↓
〈hi+1, ρi+1,Li+1,Ci+1,Gi+1,Di+1〉
〈h0, ρ0,L0,C0,G0,D0, e0; . . . ; en−1〉↓

〈hn, ρn,Ln,Cn,Gn,Dn〉

(mSEQ)

Figure 5: Modeling semantics

the method arguments and return value rather than inter-
mediate heap locations. We perform both this tasks simul-
taneously, through the modeling semantics of the subtrace.

The modeling semantics augment the natural semantics
by associating colors with every heap location and primitive
value. For subtrace T(m:i), each argument to m is initially
assigned a single unique color. The execution of T(m:i) under
the modeling semantics preserves the following invariants:

Invariant I: Computed values have all the colors of the
argument values used to compute them.

Invariant II: At each point in the trace, if a heap loca-
tion l is accessed from an argument a using a chain
of dereferences that exists at method entry, then l has
the color of a.

Invariant III: At each point in the trace, every argument
and the return value have all the colors of heap loca-
tions reachable from that argument or return value.

These invariants are easily motivated. Invariant I is the
standard notion of taint flow: the result of an operation has
the taint of the operands. Invariant II captures the gran-
ularity of our specifications on entry to a method: all the

locations reachable from an argument are part of the taint
class associated with that argument (recall the semantics of
our specifications described in Section 2). Similarly, Invari-
ant III captures reachability on method exit. For example, if
part of the structure of arg#1 is inserted into the structure
reachable from arg#2 by the execution of the trace, then
arg#2 will have the color of arg#1 on exit. At every step
of the modeling semantics these invariants are preserved for
every computed value and heap location seen so far; the in-
variants need not hold for heap locations and values that
have not yet been referenced by any event in the examined
portion of the subtrace. In addition, reachability in Invari-
ants II and III applies only to the paths through the heap
actually accessed during subtrace execution.

The natural semantics differentiate between primitive val-
ues or addresses stored in variables of ρ and objects stored
in the heap h. Although this distinction is useful in rep-
resenting the subtrace’s execution, for specification mining
we want to associate colors with both heap and primitive
values. For uniformity, we introduce a mapping L which
assigns a “virtual location” (VLoc) to every variable, object
and field based on origin (i.e., where the value was first cre-
ated) rather than the kind of value. Because virtual loca-
tions may be tainted with more than one color (recall In-

variant I), we introduce a map C : VLoc ⇀ 2Color from
virtual locations to sets of colors. The modeling semantics
also useG : {(Color,Color)}, which is a relation on colors or,
equivalently, a directed graph in which nodes are colors, and
D : (Address,Field) ⇀ Boolean, which stands for “destruc-
tively updated” and maps object fields to a boolean value
indicating that the field of that location has been written in
the current subtrace. We explain the use of G and D below.

Figure 5 lists the modeling semantics corresponding to
the natural semantics in Figure 4. We now explain how the
first 4 rules preserve Invariant I, as well as how mLoad and
mStore preserve Invariants II and III, respectively.

Rule mLit models the assignment of literals to variables.
A new literal value is essentially a new information source
within the subtrace and is assigned a new location with a
new color. The location is associated with the variable now
holding the value, preserving Invariant I. Rule mNew, which
models new object creation, is similar. Rule mAssign mod-
els an assignment x = y where x and y are both variables in
ρ and does not create a new location, but instead updates
L (x) to be the location of y, indicating that they are the
same value, again preserving Invariant I.

Rule mBinop gives the modeling semantics for binary op-
erations. Assuming locations l1 and l2 for the operands, the
rule adds a new location l3 to represent the result. Because
of Invariant I, l3 must be assigned all the colors of l1 and all
the colors of l2, thus C(l3) becomes C(l1) ∪C(l2).

Rules mLoad and mStore deal with field locations. The
virtual location of field a.f (denoted L (a, f)) is defined as
either the location of the object stored at a.f , if the field is
of reference type, or as an identifier which depends on L (a)
and the name of f , if f is of primitive type.

Rule mLoad models load events of the form x = y.f by
assigning the location l2 = L (y, f) to x and computing the
color set for this location (which will be the colors for both
x and y.f). There are three cases to consider:

• If this is the first time the location L (y, f) has been
referenced within the subtrace T(m:i), then y.f has no
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(a) Processing a load event
(b) Loads reconstruct the argument’s
structure

(c) Processing a store event

Figure 6: Effects of loads and stores in Modelgen’s Modeling Semantics

color (all heap locations except the arguments start
with the empty set of colors in C). Furthermore, since
this is the first access, y.f has not been previously writ-
ten in the subtrace, so D(ρ(y), f) = False. Therefore,
l2 is assigned the colors C(l1)∪C(l2) where l1 = L (y).
Since C(l2) = ∅ before the load event, we end up with
C(l2) = C(l1). If y.f is reachable from a method ar-
gument through y, this establishes Invariant II for y.f
on its first access.

• If l2 has been loaded previously in the trace but not
previously overwritten, then C(l2) = C(l1)∪C(l2), in-
dicating that l2 now has the colors of all of its previous
accesses plus a possibly new set of colors C(l1). This
handles the case where a location is reachable from
multiple method arguments and preserves Invariant II.

• If y.f has been written previously then D(ρ(y), f) =
True. In this case it is no longer true that L (y, f) was
reachable from L (y) on method entry and so it is not
necessary to propagate the color of L (y) to L (y, f) to
preserve Invariant II and we omit it. Also, note that if
y.f has been written, that implies the value stored in
y.f was loaded before the write and so y.f will already
have at least one color.

Figure 6a shows the effect of a single load operation from
an argument to m, while Figure 6b depicts the coloring of a
set of the heap locations after multiple load events.

Rule mStore models store events of the form x.f = y.
The rule updates D(ρ(x), f) = True since it writes to x.f .
We could satisfy Invariant III by implementing mStore in a
way that traverses the heap backwards from x to every argu-
ment of m that might reach x and associates every color of
y with those arguments (and possibly intermediate heap lo-
cations). As an optimization, we instead use G to record an
edge from each color c1 of L (y) to each color c2 of L (x.f)

Figure 7: Stores connect argument structures

with the following meaning: c1 → c2 ∈ G means every vir-
tual location with color c2 has color c1 as well. Figure 6c
depicts the results of a store operation, while Figure 7 de-
picts how G serves to associate two colored heap subgraphs.

Rule mInv implements standard method call semantics,
mapping the virtual locations of arguments and the return
value between caller and callee. Rule mSeq is the same as
Seq in the natural semantics, adding L , C, G and D.

As a consequence of Invariants I and II, the modeling se-
mantics associate the color of each argument to every value
and heap location that depends on the argument values on
entry to m. Then, because of Invariant III, when the execu-
tion reaches the end of subtrace T(m:i) every argument and
the return value have all the colors of heap locations reach-
able from that argument or return value (as represented by
G). We construct our specifications by examining the colors
of each argument aj and the return value r after executing
the subtrace: for every color of r (or aj) that corresponds to
the initial color of a different argument ak, we add ak → r
(ak → aj) to our model.

4.4 Combining Specifications
For each invocation subtrace T(m:i), the process just out-

lined produces an underapproximation of the specification
for m, based on a single execution (m : i). We combine the
results from different invocations of m by taking an upper
bound on the set of argument-to-argument and argument-to-
return flows discovered for every execution, which is simply
the union of the results of (m : i) for every i.

For example, consider the method max(a,b) designed to
return the larger of two numbers, disregarding the smaller
one. Suppose that we have two subtraces for this method:
one for invocation max(5,7), which returns 7 and produces
the model M1 = {arg#2 → return} and one for invoca-
tion max(9,2), which returns 9 and produces the model
M2 = {arg#1 → return}. Clearly the correct specification
reflecting the potential explicit information flow of method
max(a,b) is M1∪M2 = {arg#1→ return, arg#2→ return}.

We should note that combining specifications in this way
inherently introduces some imprecision with respect to the
possible flows on a given execution of the method. The ef-
fects of this imprecision in our overall system depend on the
characteristics of the static analysis that consumes the spec-
ifications. For example, the above specification for max(a,b)
would be strictly less precise than analyzing the correspond-
ing code (assuming the natural implementation) with an
ideal path-sensitive analysis, since it merges two different
control paths within the max function: one in which the first
argument is greater and one in which the second argument is
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greater. For context-sensitive but path-insensitive analysis
such as STAMP (see Section 5.2), loss of precision due to
combining specifications is less common, but still possible in
theory. Consider a method do(a,b) { a.doImpl(b) } and
two invocations of this method in which a has different types
and each type has its own implementation of a.doImpl(b).
A context-sensitive analysis can tell which version of doImpl
is executed, but Modelgen simply merges the flows observed
for every version of doImpl seen in any trace of do(a,b).

4.5 Calls to Uninstrumented Code
Our approach to specification mining is based on instru-

menting and executing as much of the platform code as we
can. Unfortunately recording the execution of every method
in the Android platform is challenging. In particular, any
technique based on Java bytecode instrumentation cannot
capture the behavior of native methods and system calls.
Since our inserted recorder class is itself written in Java, we
must also exclude from instrumentation some Java classes
it depends upon to avoid introducing an infinite recursion.
Thus, traces are not always full traces but represent only a
part of a program’s execution. We need to deal with two
problems during event interpretation: (1) How should Mod-
elgen interpret calls to uninstrumented methods? (2) How
can we detect that a trace has called uninstrumented code?

For the first problem, Modelgen offers two separate solu-
tions. The user can provide manually written models for
some methods in this smaller uninstrumented subset (as we
do, for example, for System.arraycopy and String.concat).
If a user-supplied model is missing for a method, Modelgen
assumes a worst-case model in which information flows from
every argument of the method to every other argument and
to its return value. In many cases, this worst-case model,
although imprecise, is good enough to allow us to synthesize
precise specifications for its callers. Note that the need for
a set of manual models for uninstrumented code does not
negate the benefits of Modelgen, since this represents a sig-
nificantly smaller set of methods. For example, to produce
660 specifications from a subset of the Android CTS (see
Section 5.1) we needed only 70 base manual models.

The problem of detecting uninstrumented method calls
inside traces is surprisingly subtle. Droidrecord writes an
event at the beginning of each method and before and af-
ter each method call. In the simplest case we would ob-
serve these before-call and after-call markers adjacent to
each other, allowing us to conclude that we called an unin-
strumented method. However, because uninstrumented meth-
ods often call other methods which are instrumented, this
simple approach is not enough. A call inside instrumented
code could be followed by the start of another instrumented
method, distinct from the one that is directly called. Dy-
namic dispatch and complex class hierarchies further com-
plicate determining if the method we see start after a call
instruction is the instruction’s callee.

Our solution for detecting holes in the trace due to invok-
ing uninstrumented code is to record the height of the call
stack at the beginning of every method and before and after
each call operation. Since the stack grows for every method
call, whether instrumented or not, we use its height to de-
termine when we have called into uninstrumented code. The
usual pattern to get the stack height (using a StackTrace ob-
ject) is expensive. As an optimization, we modify the Dalvik
VM to add a shortcut method to get the stack height.

5. EVALUATION
We perform three studies to evaluate the specifications

generated by Modelgen. First, we compare them directly
against our existing manually-written models (Section 5.1).
Second, we contrast the results of running the STAMP static
information-flow analysis system using these specifications
as input, against the results of the same system using the
manual models (Section 5.2). Third, we study the effect of
test suite quality on the mined specifications (Section 5.3).

5.1 Comparison Against Manual Models
To evaluate Modelgen’s ability to replace the manual ef-

fort involved in writing models for STAMP (see Section 2),
we compare the specifications mined by Modelgen against
existing manual models for 309 Android platform methods.

We conducted all of our evaluations on the Android 4.0.3
platform, which has a total of 46,559 public and protected
methods. STAMP includes manual models for 1,116 of those
methods, of which 335 are inside the java.lang.* package
which DroidRecord does not currently instrument (this is
due partly to performance reasons and partly to our instru-
mentation code depending on classes in this package, this is
not a limitation of the general technique), and 321 have only
source or sink annotations, leaving 460 methods for which
Modelgen could infer comparable specifications.

For our evaluation, we obtained traces by running tests
from the Android Compatibility Test Suite (CTS) [22]. We
restricted ourselves to a subset of the CTS purporting to test
those classes in the java.* and android.* packages, but
outside of java.lang.*, for which we have manual mod-
els (not counting simple source or sink annotations). For
some packages for which we have manual models, such as
com.google.*, the CTS contains no tests.

Table 2 summarizes our findings, organized by Java pack-
age. For each package we list the number of classes and
methods for which we have manual specifications, as well as
the total number of correct individual flow annotations (e.g.
arg#X → return) either from our manual specifications or
generated by Modelgen. We then list separately the flows
discovered by Modelgen and those in our manual specifica-
tions. We consider only those flows in methods for which we
have manual models and only those classes for which we ran
any CTS tests, which gives us 309 methods to compare.

We evaluate Modelgen under two metrics: precision and
recall. Precision relates to the true positive rate of Mod-
elgen, listing the percentage of Modelgen flow annotations
which represent actual possible information flows induced
by the method. To determine which Modelgen annotations
are correct, we compared them with our manual models and,
when the specification for a given method differed between
both approaches, we inspected the actual code of the method
to see if the differing annotations represented true positives
or false positives for either technique. Thus, if FModelgen
is the set of flows discovered by Modelgen and TP the set
of all flows we verified as true positives, then Modelgen’s
precision is defined as:

PModelgen = |FModelgen ∩ TP |/|FModelgen |

Similarly the precision of the manual models is:

PManual = |FManual ∩ TP |/|FManual |
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Table 2: Comparing Modelgen specifications and manual models
Package Classes Methods Missing

trace
info.

Total
correct
flows

Modelgen
correct
flows

Manual
correct
flows

Modelgen
false

positives

Manual
errors

Modelgen
precision

Manual
precision

Modelgen
recall

java.nio.* 2 26 4 50 50 42 0 0 100% 100% 100%
java.io.* 28 146 23 280 275 234 2 0 99.28% 100% 97.86%
java.net.* 7 37 4 104 100 65 0 1 100% 98.48% 93.85%
java.util.* 4 28 0 36 36 31 0 1 100% 96.88% 100%
android.text.* 3 5 2 3 3 3 0 0 100% 100% 100%
android.util.* 2 8 1 11 4 7 0 0 100% 100% 0%
android.location.* 3 13 3 12 12 9 0 0 100% 100% 100%
android.os.* 2 46 3 60 60 49 0 0 100% 100% 100%

Total 51 309 40 556 540 440 2 2 99.63% 99.55% 96.36%

Table 2 lists the precision of each approach for each pack-
age. Both Modelgen specifications and manual models achieve
a precision of over 99%.

Recall measures how many of our manual models are also
discovered by Modelgen, and is calculated as:

Recall = |FModelgen ∩ FManual |/|FManual |

As we can see from Table 2, Modelgen finds about 96%
of our manual specifications. The specifications Modelgen
misses were written to capture implicit flows, which is not
surprising since Modelgen is designed to detect only explicit
flows. A prime example of this limitation is the row cor-
responding to android.util, in which 7 of the 8 analyzed
methods are part of the android.util.Base64 class, which
performs base64 encoding and decoding of byte buffers via
table lookups, inducing implicit flows. Modelgen discovers
four new correct flows for these methods, but misses all the
implicit flows encoded in the manual models. The last re-
maining method in this package is a native method.

We can similarly calculate Modelgen’s recall versus the
total number of true positives from both techniques, as well
as the analogous metric for Manual:

|FModelgen ∩ TP |/|TP | = 97.12%

|FManual ∩ TP |/|TP | = 79.14%

This shows that our technique discovers many additional
correct specifications that our manual models missed.

We found two false positives in Modelgen, both in the
same method. Two spurious flow annotations were gener-
ated, due to a hole in the trace which Modelgen processes un-
der worst-case assumptions. Notably, we also found two er-
rors in the manual models: one was a typo (arg#2→ arg#2
instead of arg#2 → return) and the other was a reversed
annotation (arg#1→ this instead of this→ arg#1).

Our current implementation of Modelgen failed to pro-
duce traces for a few methods that have manual annota-
tions, listed under the column “Missing trace info.” of Table
2. Reasons for missing traces include: the method for which
we tried to generate a trace is a native method, the Android
CTS lacks tests for the given method, or an error occurred
while instrumenting the class under test or while running
the tests. This last case often took the form of triggering in-
ternal responsiveness timers inside the Android OS, known
as ANR (Application Not Responding) [23]—because our in-
strumentation results in a significant slowdown (about 20x),
these timers are triggered more often than they would be in
uninstrumented runs. Since capturing the traces is a one-
time activity, this high overhead is otherwise acceptable.

These results suggest that Modelgen can be used to re-
place most of the effort involved in constructing manual

models, since it reproduced almost all our manual flow an-
notations (96.38% recall) and produced many new correct
annotations that our existing models lacked. Although our
evaluation focuses on Java and Android, the results should
generalize to any platform for which good test suites exist.

5.2 Whole-System Evaluation of STAMP and
Modelgen

The STAMP static analysis component is a bounded context-
sensitive, flow- and path-insensitive information flow anal-
ysis. A complete description of this system can be found
in Section 4 of [18]. STAMP never analyzes platform code
and treats platform methods for which it has no explicit
model under best-case assumptions. That is, platform meth-
ods without models are assumed to induce no flows between
their arguments or their return values3.

To evaluate the usefulness of our specifications in a full
static analysis, we ran STAMP under two configurations:
base and augmented. In the base configuration, we used only
the existing manually-written models. In the augmented
configuration, we included (1) all source and sink annota-
tions from the manual models (annotating sources and sinks
is outside of the scope of Modelgen), (2) the Modelgen spec-
ifications generated in the experiment of Section 5.1, and
(3) the existing manual models for those methods for which
Modelgen did not construct any specifications (e.g. the
java.lang.* classes). The base and augmented configura-
tions included 1215 and 2274 flow annotations, respectively.

We compared the results of both configurations on 242
apps from the Google Play Store. These apps were randomly
selected among those for which STAMP was able to run with
a budget of 8GB of RAM and 1 hour time limit in both
configurations. The average running time per app is around
7 minutes in either configuration.

STAMP finds a total of 746 (average 3.08 per app) and 986
(average 4.07) flows in the base and augmented configura-
tion, respectively. The union of the flows discovered in both
configurations is exactly 1000. In other words, STAMP finds
31% (254) new flows in the augmented configuration. Like
most static analysis systems, STAMP can produce false pos-
itives, even when given sound models. Additionally, Mod-
elgen may produce unsound models for some methods (re-
call the discussions in sections 4.4 and 4.5). Given this, we
would like to know what proportion of these new flows are
true positives. To estimate the true positive rate of the new
flows, we took 10 random apps from the subset of our sam-
ple (109 of 242 apps) for which the augmented configuration
finds any new flows. We manually inspected these apps and
marked those flows for which we could find a feasible source-
sink path, and for which control flow could reach such path,
as true positives. Although this sort of inspection is always

3The alternative, analyzing under worst-case assumptions,
produces an overwhelming number of false positives.

136



Figure 8: Flows found with and without Modelgen
models

susceptible to human error, we tried to be conservative in
declaring flows to be true positives. In most cases, the flows
are contained in advertisement libraries and would trigger
as soon as the app started or a particular view within the
app was displayed to the user.

Figure 8 shows the results of our manual inspection. The
flows labeled as “Augmented configuration: Unknown” are
those for which we could not find a source-sink path, but
are not necessarily false positives. The flows labeled “Aug-
mented configuration: True Positives”represent a lower bound
on the number of new true positives that STAMP finds in the
augmented configuration. The lower portion of the bar cor-
responds to those flows found in both configurations, with-
out attempting to distinguish whether they are false or true
positives. For the 10 apps, the augmented configuration pro-
duces 64% more flows than the base configuration, and at
least 55% of these new flows are true positives.

The recall of the augmented configuration, which is the
percentage of all flows found in the base configuration that
were also found in the augmented configuration, is 98.12%.
A flow found in the base configuration could be missed in
the augmented configuration if Modelgen infers a different
specification for a method, which is relevant for the flow,
than the manually-written model.

5.3 Controlling for Test Suite Quality
Specification mining based on concrete execution traces

depends on having a representative set of tests for each
method for which we want to infer specifications. One threat
to the validity of our experiment is that it could be that
our results are good only because the Android compatibility
tests are unusually thorough. In this section we attempt to
control for the quality of the test suite.

We measure how strongly our specification mining tech-
nique depends on the available tests by the number of method
executions it needs to observe before it converges to the final
specification. Intuitively, if few executions of a method are
needed to converge to a suitable specification of the method’s
behavior, then our specification mining technique is more ro-
bust that if it requires many executions, and therefore many
tests. Additionally, if a random small subset of the observed
executions is enough for our technique to discover the same
specification as the full set of executions, we can gain some
confidence that observing additional executions won’t dra-
matically alter the results of our specification mining.
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Figure 9: Specification Convergence

We take all methods from Table 2 for which we are able to
record traces and Modelgen produces non-empty specifica-
tions, which are 264 methods in total. We restrict ourselves
to those methods, as opposed to the full set for which we
have mined specifications, since we have examined them and
found them to be correct during the comparison of Section
5.1. For each such method m, we consider the final spec-
ification produced by Modelgen (Sm) as well as the set S
of specifications for each invocation subtrace of m. Starting
with the empty specification we repeatedly add a random
specification chosen from S until the model matches Sm,
recording how many such subtrace specifications are used to
recover Sm.

Figure 9 shows a log scale plot of the number of methods
(vertical axis) that required n traces (horizontal axis) to
recover the full specification over each of 20 trials. That
is, we sampled the executions of each method to recover
its specification and then counted the number of methods
that needed one execution, the number that needed two,
and so on, and then repeated this process 19 more times.
The multiple points plotted for each number of executions
give an idea of the variance due to the random choices of
method executions to include in the specification.

It is also useful to consider aggregate statistics over all
method specification inferences. In our experiment, 83.7%
of the methods needed just one subtrace specification to re-
cover the specification and no method required more than an
average of 9 random subtrace specifications. The maximum
number of subtraces needed to converge to a method specifi-
cation (when taking the worst out of 20 iterations of the algo-
rithm) was 13 for java.util.Vector.setElementAt(Object,
int). The average number of subtraces required to converge
to a specification is 1.38. For comparison, the specifications
evaluated in Section 5.1 were inferred using a median of 4
traces (the average, 207, is dominated by a few large out-
liers). We conclude that explicit information flow typically
requires few observations to produce useful specifications.

6. RELATED WORK
Dynamic techniques for creating API specifica-

tions. Many schemes have been proposed for extracting dif-
ferent kinds of specifications of API methods or classes from
traces of concrete executions. Closest to ours is work on pro-
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ducing dynamic dependence summaries of methods as a way
to improve the performance of whole-program dynamic de-
pendence analysis [41]. Dependence analysis of some form is
a prerequisite for explicit information flow analysis, since it
involves determining which program values at which point in
the execution are used to compute every new program value.
Although our use case, and thus evaluation, is very different
than that of [41], the specifications produced are somewhat
related. In [41], a specification that a flows to b means liter-
ally that a location named by a is used to compute a value
in a location named by b. In our framework, a specification
that a flows to b means that some value reachable from a
is used to compute some value reachable from b. Thus, the
major difference is that we“lift” the heap-location level flows
to abstract flows between method arguments and between
arguments and the return value of the method, as described
in 4.3. This lifting step requires additional infrastructure to
maintain colors in the dynamic analysis, an issue that does
not arise in dynamic dependence analysis. The added ab-
straction reduces the size of the summaries and allows us to
generalize from fewer traces, though with a potential loss in
precision, a trade-off which our results suggest is justified.

Using dynamic analysis to compute specifications con-
sumed by static analysis has also been heavily explored.
However, most such specifications focus on describing control-
flow related properties of the code being modeled. A large
body of work (e.g. [9, 2, 50, 34, 52, 51, 11, 20, 36, 35, 32])
constructs Finite State Automata encoding transitions be-
tween abstract program states. Other approaches focus on
inferring program invariants from dynamic executions, such
as method pre- and post-conditions (Daikon [40, 15, 16]),
array invariants [39] and algebraic “axioms” [26]. Another
relevant work infers static types for Ruby programs based
on the observed run-time types over multiple executions [28].
Finally, program synthesis techniques have been used to con-
struct simplified versions of API methods that agree with a
set of given traces on their input and output pairs [42].

Dynamic taint tracking and related analyses. Dy-
namic taint tracking uses instrumentation and run-time mon-
itoring to observe or confine the information flow of an appli-
cation. Many schemes have been proposed for dynamic taint
tracking [24, 10, 14, 5]. An exploration of the design space
for such schemes appears in [45]. Dytan [10] is a generic
framework capable of expressing various types of dynamic
taint analyses. Our technique for modeling API methods
is similar to dynamic taint tracking, and could in principle
be reformulated to target Dytan or some similar general dy-
namic taint tracking framework. However, heap-reachability
and all of our analysis would have to be performed online, as
the program runs, which might exacerbate timing dependent
issues with the Android platform.

As mentioned previously, dependence analysis is also re-
lated to information flow analysis, and the large body of
work in dynamic dependence analysis is therefore also rele-
vant to our own (e.g. [47, 27] and references therein).

Tools for Tracing Dynamic Executions. Query lan-
guages such as PTQL [21] and PQL [37] can be used to for-
mulate questions about program executions in a high-level
DSL, while tools like JavaMaC [30], Tracematches [1], Hawk
[12] and JavaMOP [29] permit using automata and formal
logics for the same purpose. Frameworks like RoadRunner
[19] and Sofya [31] allow analyses to subscribe to a stream
of events representing the program execution as it runs.

Static taint analysis. A number of static techniques
and tools [13, 25, 38, 33, 48] have been developed for whole-
application taint analysis. See [44] for a survey of work in
this field. For applications that run inside complex appli-
cation frameworks these analyses often must include some
knowledge of the framework itself. F4F [46] is a scheme for
encoding framework-specific knowledge in a way that can be
processed by a general static analysis. In F4F, any models
for framework methods must be written manually. Flow-
droid [3] is a context-, flow- and object-sensitive static taint
analysis system for Android applications, which can analyze
Android platform code directly. By default, it uses models
or ‘shortcuts’ for a few platform methods as a performance
optimization and to deal with hard-to-analyze code. Flow-
droid’s shortcuts are also information-flow specifications of
a slightly more restrictive form than that used by Modelgen.
Thus, it seems likely the FlowDroid shortcuts could also be
mined successfully from tests.

The technique presented in [8] uses static analysis to infer
specifications of framework methods such that those spec-
ifications complete information flow paths from sources to
sinks. Since this technique does not analyze the code of
the framework methods, it often suggests spurious models,
which must be filtered by a human analyst. This technique
is complimentary to ours; DroidRecord can be used to vali-
date models inferred by this technique. There has also been
some previous work on identifying sources and sinks in the
Android platform based on the information implicitly pro-
vided by permission checks inside API code [17, 4, 6] or by
applying machine learning to some of the method’s static
features [43]. This work could be combined with our method
for inferring specifications to enable fully automatic explicit
information flow analysis (i.e., with no manual annotations).

7. CONCLUSIONS
We have described an effective technique for generating

explicit information flow specifications for platform methods
that outperforms manual flow annotations in practice. We
presented Modelgen, an implementation of this technique
for Java and the Android platform. Modelgen specifications
are highly precise and provide high recall with respect to our
existing manual models. They also allow our static analysis
to find true flows it misses despite years of manual model
construction effort. Furthermore, such specifications can be
inferred from a relatively small set of execution traces.

In future work, we plan to explore ways in which our dy-
namic specification mining technique might be augmented
with lightweight static analysis of the platform code or com-
bined with specification mining techniques based on static
analysis of the application code (e.g. [8]). We will also ex-
plore whether the small number of tests needed to converge
to the correct specification can be generated automatically,
such as by using dynamic symbolic execution or other input
generation techniques.
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