
Practical Inference of Nullability Types

Nima Karimipour∗

nima.karimipour@email.ucr.edu
University of California, Riverside

Riverside, California, USA

Justin Pham
jpham079@ucr.edu

University of California, Riverside
Riverside, California, USA

Lazaro Clapp
lazaro@uber.com
Uber Technologies

San Francisco, California, USA

Manu Sridharan
manu@cs.ucr.edu

University of California, Riverside
Riverside, California, USA

ABSTRACT

NullPointerExceptions (NPEs), caused by dereferencing null, fre-

quently cause crashes in Java programs. Pluggable type checking is

highly effective in preventing Java NPEs. However, this approach

is difficult to adopt for large, existing code bases, as it requires

manually inserting a significant number of type qualifiers into the

code. Hence, a tool to automatically infer these qualifiers could

make adoption of type-based NPE prevention significantly easier.

We present a novel and practical approach to automatic inference

of nullability type qualifiers for Java. Our technique searches for

a set of qualifiers that maximizes the amount of code that can be

successfully type checked. The search uses the type checker as a

black box oracle, easing compatibility with existing tools. However,

this approach can be costly, as evaluating the impact of a qualifier

requires re-running the checker. We present a technique for safely

evaluating many qualifiers in a single checker run, dramatically

reducing running times. We also describe extensions to make the

approach practical in a real-world deployment.

We implemented our approach in an open-source tool Null-

AwayAnnotator, designed toworkwith theNullAway type checker.

We evaluated NullAwayAnnotator’s effectiveness on both open-

source projects and commercial code. NullAwayAnnotator re-

duces the number of reported NullAway errors by 69.5% on average.

Further, our optimizations enable NullAwayAnnotator to scale

to large Java programs. NullAwayAnnotator has been highly

effective in practice: in a production deployment, it has already

been used to add NullAway checking to 160 production modules

totaling over 1.3 million lines of Java code.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

pluggable type systems, null safety, static analysis, inference

∗This work was partially completed during an internship at Uber Technologies Inc.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616326

ACM Reference Format:

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. 2023.

Practical Inference of Nullability Types. In Proceedings of the 31st ACM

Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San

Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3611643.3616326

1 INTRODUCTION

NullPointerExceptions (NPEs), caused by a dereference of null,

are a well-known and common cause of crashes in Java programs.

Hence, there has been a great deal of past research on preventing

null dereferences (e.g., [17, 22, 24, 28]). Type-based approaches to

nullness checking are growing in popularity. In this approach, types

include information on whether each expression may evaluate to

null, and only expressions that cannot be null can be dereferenced.

Recent languages like Kotlin [21] and Swift [35] build null safety

into their type systems. Further, pluggable type checkers like the

Checker Framework [9, 28], Eradicate [10], Nullsafe [31], and Null-

Away [4] leverage type qualifiers [13] to add type-based nullness

checking to Java.

Type-based nullness checking can be difficult to adopt for exist-

ing Java code bases, due to the need to manually add type qualifiers

into the code. To enable incremental and modular checking, type-

based nullness checkers require explicit nullability annotations on

field, parameter, and return types. Hence, manual effort is required

to annotate any existing program for a type-based checker. While

default assumptions for unannotated types reduces the annotation

burden considerably [28], a significant number of explicit annota-

tions must still be written.1 Our goal is to develop a tool for auto-

matically inferring nullability qualifiers for existing code, thereby

dramatically easing adoption of type-based nullness checking.

We desire a practical inference tool that can be used with real-

world code bases and type checkers, and as such have three key

requirements. First, we require a tool that provides a “best effort”

partial solution in cases where a program cannot be verified without

code changes. Existing code may have real bugs, or may be correct

but written in a style that is not amenable to type-based verification.

In such cases, an inference tool can still provide significant value by

adding annotations that enable type checking ofmost of the original

program. This way, most newly-added or modified code (very often

1Banerjee et al. [4] report an average of roughly 13 explicit annotations per KLoC on
their open-source benchmarks, ranging up to 46 annotations per KLoC.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1395

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-2599-7770
https://orcid.org/0009-0005-3064-0601
https://orcid.org/0009-0001-9773-7273
https://orcid.org/0000-0001-7993-302X
https://doi.org/10.1145/3611643.3616326
https://doi.org/10.1145/3611643.3616326
https://doi.org/10.1145/3611643.3616326
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616326&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan

the source of defects [26]) will be type checked, while developers

can gradually adopt and enable checking for the remaining code.

Second, we require the inference tool to work alongside an ex-

isting type checker implementation. Inference approaches often

require a type checker that supports both checking and inference

directly, e.g., using constraint generation and solving. Our tool in-

fers annotations for the existing production-quality NullAway type

checker [4], which does not use constraints. While the constraint-

based approach is elegant and efficient, re-implementation of a

complex checker like NullAway to use constraints would require

a huge effort. For example, NullAway employs ad hoc handling

of various coding patterns and libraries (e.g., stream libraries and

gRPC [15]) to reduce false positives [27], and this customized han-

dling logic would have to be encoded precisely using constraints. To

avoid re-implementation, we desire an inference approach that pri-

marily treats the type-checking tool as a black-box oracle, relying

only on its reported errors to perform inference.

Third, we require the inference tool to be performant. For our

use cases, the tool must be able to run in an overnight job (roughly

8 hours maximum). With a longer running time, deployment of the

tool becomes less practical, due to the compute resources required,

and the fact that the target code could be changing frequently.

We are unaware of any existing approach that meets these three

requirements.

In this paper, we present a novel approach to nullability type

inference suited to these requirements. Given an unannotated pro-

gram, our approach searches for a set of type qualifiers that mini-

mizes the remaining number of NullAway errors, thereby maximiz-

ing the amount of code NullAway is able to type check. Finding a

good set of qualifiers is non-trivial; we found that eagerly insert-

ing all possible qualifiers could increase the final number of errors.

Our strategy evaluates candidate qualifiers using a bounded-depth

search, iterated to a fixed point.

A naïve implementation of our search strategy is too slow for

large code bases. When treating the type checker as a black-box

oracle, evaluating the impact of a candidate qualifier on the error

count requires re-running the type checker. Though NullAway is

highly optimized [4], each run still requires a re-compilation of the

code and can take tens of seconds or longer. For larger programs, a

straightforward version of our search required running over 1,000

builds, making the tool too slow.

Our key insight is that many qualifiers impact the error count

independently of each other. Since NullAway performs modular

checking, the code regions where new errors may appear due to

qualifier insertion are localized and can be computed ahead of time.

Given this information, we construct a graph representing which

candidate qualifiers may “conflict” by causing new errors in an

overlapping region. Then, we use graph coloring to find sets of

non-conflicting qualifiers, which can all be tested simultaneously

within a single NullAway build. With this approach, many fewer

runs of NullAway are required, dramatically reducing running time

and making the tool practical.

We also describe extensions to our technique for handling real-

world code patterns and deployment. We show how our algorithm

can incorporate usage information from client code when annotat-

ing a library, significantly easing deployment in a large, modular

1 class Test {

2 +@Nullable Object f1 = null;

3 +@SuppressWarnings("NullAway") Object f2 = null;

4 +@Nullable Object f3 = null;

5 +@Nullable Object f4 = null;

6 +@Nullable Object f5 = f4;

7 String m1() {

8 return f1 != null ? f1.toString() : f2.toString();

9 }

10 int m2() {

11 return f3 != null ? f3.hashCode() : f2.hashCode();

12 }

13 +@Nullable Object m3() {

14 return f4;

15 }

16 }

Figure 1: Motivating example for inference. Green text indi-

cates where annotations are inserted by our technique. Our

tool chooses to suppress the error on line 3, to maximize the

amount of code checked by NullAway.

code base. And, we describe a specialized handling of field initial-

ization to better handle certain common patterns.

We implemented our approach in an open-source tool Null-

AwayAnnotator, which generates annotations suitable for directly

enabling NullAway checking. We performed an extensive empirical

evaluation, on both open-source projects and a set of commercial

code modules at Uber Technologies Inc. (Uber). The evaluation

showed that NullAwayAnnotator decreased the final number of

errors reported by NullAway by an average of 69.5% (36.9%–90.1%).

Further, our optimizations were critical for acceptable performance,

reducing running time by an average of 6.1X (2.0X–17.8X) and

eliminating two timeouts. NullAwayAnnotator is deployed at

Uber for direct use by developers, and it has been highly effective:

it has been used to enable NullAway checking for 160 production

modules, totaling over 1.3 million lines of code.

This paper makes the following key contributions:

• We present a technique to infer type qualifiers that make

as much of an existing program as possible verifiable by

NullAway, while treating NullAway as a black box oracle.

• We describe an optimized search that leverages conflict de-

tection via graph coloring to simultaneously evaluate many

candidate qualifiers, reducing running time.

• We present an open-source implementation of the approach,

NullAwayAnnotator, and show its effectiveness in an ex-

tensive experimental evaluation.

2 OVERVIEW

In this section, we give an overview of our nullability inference

technique and present relevant background. We illustrate our tech-

nique using the example code in Figure 1.

1396

Practical Inference of Nullability Types ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2.1 Type-Based Nullness Checking

We briefly introduce key ideas of type-based nullness checking; see

the literature for details [4, 9, 28]. Type-based nullness checkers for

Java use type qualifiers [13] to capture whether a type includes or

excludes null. These qualifiers are written in source code using Java

annotations, prefixed with @. Such checkers typically use @Nullable

to qualify a type that contains null, and @NonNull for a type that does

not. An unqualified type is treated as @NonNull by default, except

for local variables, whose qualifiers are inferred automatically [28].

Given these qualifiers, type checking guarantees that a @Nullable

expression is never assigned to a @NonNull location, and that a

@Nullable expression is never dereferenced. Assuming object fields

are properly initialized, and that all executing code has been type

checked, these properties together guarantee the program will be

free of NPEs. For clarity, we defer discussing the impacts of field

initialization checking to Section 6, and for now assume that all

@NonNull fields are appropriately initialized in a constructor.

Consider the code example in Figure 1, ignoring the green in-

serted annotations. Running NullAway on this code will yield four

errors, one for each of lines 2 to 5, since each line assigns null to

a @NonNull field (@NonNull by default since they are unannotated).

These errors can be removed by changing the type qualifier of

each field to be @Nullable, e.g., writing @Nullable Object f2 on

line 3. However, adding these qualifiers can lead to new NullAway

errors; e.g., making f2 @Nullable causes a new error on line 8, since

f2.toString() then dereferences a @Nullable expression. Currently,

adding type-based nullness checking to an existing code base re-

quires repeatedly adding annotations and changing code manually

until no errors remain, a tedious, time-consuming process.

To ensure null safety, type-based nullness checkers must also

enforce standard subtyping rules for method overriding, i.e., covari-

ant return types and contravariant parameter types. So, if a method

Super.m1(p) has a @NonNull return type and a @Nullable parameter

type, an overriding method Sub.m1(p) (where Sub extends Super)

must not have a @Nullable return type or a @NonNull parameter

type; see further discussion in the literature [4, 28].

2.2 Inference Approach

The goal of our work is to automate a significant portion of the work

required to adopt type-based nullness checking for pre-existing,

real-world code bases. We focus on the problem of inferring a set of

@Nullable type qualifiers that minimizes the number of remaining

errors reported by NullAway. As noted in Section 1, we require

inference to use NullAway as a black-box oracle. Hence, checking

the impact of a set of qualifiers on NullAway’s error count requires

re-running NullAway on a modified version of the program with

the qualifiers inserted. We only attempt to address errors fixable

via qualifier insertion, i.e., errors stemming from either assigning

a @Nullable expression into a @NonNull location or an incorrect

method override (not dereferences of @Nullable expressions). From

such errors, we create a set of candidate fixes based on qualifier

insertion, and then use NullAway to test if those fixes reduce the

overall error count.

Determining the impact of a candidate fix may require multiple

iterations, as fixes can cause new errors which themselves are

amenable to fixing. For Figure 1, adding a @Nullable qualifier to fix

the error at line 3 leads to two new errors at line 8 and line 11, both

due to dereference of a @Nullable expression. Since our approach

cannot fix these new errors, the line 3 fix increases the overall error

count and is not retained. It makes sense to leave this error for the

developer to handle, as the lack of null checks for f2 on lines 8

and 11 contradict the initialization of f2 to null, and it is unclear

how to automatically resolve this contradiction.

Adding a @Nullable qualifier for the error on line 5 also causes

two new errors, on line 6 and line 14. However, these new errors

can be addressed via two more @Nullable qualifiers (on line 6 and

the return type on line 13), and these qualifiers cause no further

errors, yielding an overall decrease. Our search discovers the final

solution shown in Figure 1, which includes these three qualifiers.

We detail our iterative search strategy in Section 3.

To create a code change that can be adopted immediately, our

tool suppresses any remaining NullAway errors after its search is

complete; for Figure 1, we insert the @SuppressWarnings annotation

on line 3. Adding suppressions is not ideal, since they may mask

real NPE bugs remaining in the code. However, a key benefit of this

approach is that after remaining errors are suppressed, NullAway

can be enabled for all future builds of the code. Developers then

benefit from NullAway checking for any subsequent code change

outside of a suppressed region or any newly-written code, and re-

cent code changes are often the source of defects [26]. Remaining

suppressions can be removed gradually as part of periodic code

cleanup efforts. Also note that with this approach, the initial code

change enabling NullAway introduces no semantic changes (easing

code review) and can be generated with no manual effort. Minimiz-

ing the number of remaining NullAway errors during inference

maximizes the amount of code subject to NullAway checking after

the inferred qualifiers are adopted.

2.3 Optimizing Performance

A naïve implementation of our search runs too slowly in practice,

due to the cost of repeatedly running NullAway to evaluate candi-

date solutions. Reducing running time therefore requires reducing

the number of NullAway runs required for inference. This reduction

could be achieved if multiple independent qualifiers could be evalu-

ated simultaneously in a single run of NullAway. Two qualifiers are

independent if any NullAway errors removed or caused by each

qualifier are guaranteed to be in non-overlapping regions of code.

Achieving a speedup requires efficiently computing large groups

of independent qualifiers.

Our first key insight was that due to modular type checking,

the potential code regions where a @Nullable qualifier may add or

remove errors can be computed precisely and cheaply. For example,

a @Nullable qualifier on a field can only impact error counts within

methods that read or write the field; new errors cannot appear other

unrelatedmethods. So, for the initial errors in Figure 1, our approach

determines that the potentially impacted regions for @Nullable

qualifiers are m1 for f1, m1 and m2 for f2, m2 for f3, and m3 for f4.2

Intuitively, many qualifiers in a large program may be indepen-

dent (e.g., when they apply to private state of distinct classes), but a

question remains as to how to quickly find large sets of independent

2Each field initializer (e.g. the right hand side of Object f5 = f4) is also a region,
which we ignore here for simplicity; see Section 4.1 for details.

1397

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan

Algorithm 1 Pseudocode for unoptimized search.

1: procedure FindNullable�alifiers(%,3)

2: � ← NullAwayErrors(%)

3: �all ← FixLocations(�)

4: �new ← �all
5: while �new ≠ ∅ do

6: �good ← EvaluateFixes(%, �new, �all, 3, �)

7: % ← ApplyFixes(%, �good)

8: � ← NullAwayErrors(%)

9: � ← FixLocations(�)

10: �new ← � − �all
11: �all ← �all ∪ �new
12: end while

13: return %

14: end procedure

15: procedure EvaluateFixes(%, �, �all, 3, �)

16: if 3 = 0 return �

17: �good ← ∅

18: for 5 ∈ � do

19: curFixes← {5 }

20: for 8 ∈ [1, 3] do

21: % ′ ← ApplyFixes(%, curFixes)

22: �′ ← NullAwayErrors(% ′)

23: � ′ ← FixLocations(�′)

24: if |� | − |�′ | ≥ 0 then

25: �good ← �good ∪ {curFixes}

26: break

27: end if

28: newFixes← � ′ − �all
29: if newFixes = ∅ then

30: break

31: else

32: curFixes← curFixes ∪ newFixes

33: end if

34: end for

35: end for

36: return �good
37: end procedure

qualifiers. Our second key insight was that groups of independent

fixes could be computed efficiently via graph coloring [18]. In com-

pilers, graph coloring is often used for register allocation [2]. In

our scenario, two fixes are independent if their impacted regions

do not overlap. We construct a graph representation where nodes

represents sets of fixes, and an edge between two nodes reflects

overlapping regions for their fixes. This graph can be colored to

find groups of fixes that can be evaluated in a single NullAway

run. For our example, the f1, f3, and f4 fixes for Figure 1 can all be

evaluated in a single run of NullAway (see Figure 2 in Section 4).

Overall, the optimized approach reduces the number of NullAway

runs required by two for Figure 1, and as shown in Section 8, the

reductions for real-world code are much more dramatic.

3 SEARCH-BASED QUALIFIER INFERENCE

In this section, we present an unoptimized version of our inference

algorithm for @Nullable qualifiers, to make clear how our technique

explores and evaluates the space of possible qualifiers. In Section 4,

we present our graph-coloring-based optimized search.

Pseudocode for the unoptimized technique appears in Algo-

rithm 1. Given an unannotated program % and a depth limit 3 for

evaluating fixes, FindNullable�alifiers(%,3) returns a mod-

ified program with @Nullable qualifiers that reduce the number

of reported NullAway errors. It uses a procedure EvaluateFixes

that, given a program % , a set of candidate fixes � , all previously-

considered fixes �all , the depth limit 3 , and the NullAway errors �

for % , returns a set �good of fixes that reduce the NullAway error

count for % .

Both procedures make use of three key subroutines (whose im-

plementations are not shown). NullAwayErrors runs NullAway

to compute the errors it reports for a program % . Given a set of

errors �, FixLocations(�) first determines the subset of errors in

� that can be fixed via @Nullable insertion (see Section 2.2). For

that subset, it returns a set containing fixes for each error, i.e., the

code locations where @Nullable should be inserted to fix the error

(multiple locations may be required for a single initializer error; see

Section 6). Finally, given a program and a set of fixes, ApplyFixes

returns a new program with the fixes inserted.

The algorithm proceeds as follows. FindNullable�alifiers

runs a fixed-point loop (lines 5–12), inserting fixes determined

by EvaluateFixes to reduce the error count until no new fixes

can be found. In EvaluateFixes, if the depth limit 3 = 0, all fixes

are assumed to be good (line 16), leading to their eager insertion.

Otherwise, for each fix 5 ∈ � , the algorithm iteratively applies 5

and any new fixes discovered after applying 5 up to somemaximum

depth 3 (lines 18–35). In the first iteration, only 5 itself is tested

(line 19), with newly discovered fixes added to the curFixes set for

each subsequent iteration (lines 28–33).

A fix 5 is determined to be good if the curFixes set of fixes for 5

does not increase the NullAway error count (lines 24–27). We keep

fixes even if they yield the same error count to improve handling of

fix chains at lower depth limits. A fix chain occurs when inserting

fix 51 causes a single new error with fix 52, 52 leads to 53, and so

on, where the final fix causes no new error. If good fixes needed to

strictly reduce the error count, then discovering the goodness of 51
would require setting 3 to at least the length of the chain, reducing

performance. With our approach, the fix chain is applied even with

depth limit 1, due to the outer fixed-point loop.

Algorithm 1 is guaranteed to terminate. In an execution of Find-

Nullable�alifiers, the �all set of fixes grows monotonically, and

number of possible fixes for a program is finite. So, eventually, �new
must become empty after line 10, causing the loop to terminate.

Example. Consider applying Algorithm 1 to the Figure 1 example,

with a depth limit 3 = 2. In the first iteration, �new = {2, 3, 4, 5},

representing the fix locations for the initial errors reported by

NullAway. In EvaluateFixes, the fixes 2 and 4 will be labeled as

good at depth 1, since they immediately reduce the error count by

1. Fix 3 is not labeled as good, as it introduces errors that cannot

be fixed with @Nullable annotations, but fix 5 is labeled good after

exploring to depth 2 and applying subsequent fixes at lines 6 and 13

1398

Practical Inference of Nullability Types ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(see Section 2.2 discussion). So, �good = {2, 4, 5, 6, 13} in the first

fixed-point loop iteration. No new fixes are observed after applying

�good , so the algorithm converges, yielding the final set of @Nullable

qualifiers shown in Figure 1. For this example, the unoptimized

algorithm requires 7 calls toNullAwayErrors to compute the final

solution; Section 4 will show how we can reduce this number.

4 OPTIMIZED SEARCH

The search algorithm of Section 3 runs too slowly for larger code

bases, due to running a large number of NullAway builds. Here,

we present optimizations to significantly reduce this cost, based

on evaluating multiple independent qualifiers simultaneously in a

build. We first define the potentially-impacted regions of a qualifier

(Section 4.1), used to determine when qualifiers can be evaluated

simultaneously. Then, we give details of our graph-coloring-based

search algorithm (Section 4.2).

4.1 Potentially-Impacted Regions

Our optimizations exploit the fact that for a type-based nullness

checker, introducing a @Nullable qualifier on an entity (field, method

parameter, or method return) can only impact the final error count

in regions of the code where the entity is directly used or overridden.

This fact stems from the modular nature of the type checking; since

no inter-procedural analysis is performed by the checker to deter-

mine nullability, the impact of changed nullability for an entity

cannot propagate beyond the procedures using the entity.

A region is a method, an initializer expression (e.g., the read of f4

at line 6 in Figure 1), or an initializer block. Given an entity 4 , the

potentially-impacted regions for 4 are the set of regions whose con-

tained error count may change as the result of adding a @Nullable

qualifier to 4 . We define potentially-impacted regions for 4 as follows:

• If 4 is a field 5 , any region containing a read or write of 5 is

potentially-impacted.

• If 4 is a parameter or return of method�.<, then�.< itself is

potentially impacted, as is any region that calls�.<. Further,

any method that overrides or is overridden by �.< is also

potentially impacted.

Regions that read 4 may contain new errors, since once 4 is @Nullable

it cannot be dereferenced or assigned to a @NonNull location. Simi-

larly, errors may be removed from regions that write 4 , since writes

of @Nullable values into 4 become legal. Overriding or overridden

methods may be impacted due to NullAway’s subtyping checks

(see Section 2.1). Potentially-impacted regions can be computed

using standard type-checking information, like a type hierarchy

and symbol tables.

4.2 Optimized Algorithm

Algorithm 2 gives pseudocode for the key EvaluateFixesOpt pro-

cedure of our optimized search. The overall algorithm retains the

FindNullable�alifiers procedure from Algorithm 1, with the

call to EvaluateFixes at line 6 replaced with a call to Evaluate-

FixesOpt.

EvaluateFixesOpt computes groups of independent fixes using

a conflict graph. Each node in the graph represents a pair of a root fix

5 and related fixes curFixes being tested, the same state tracked for

each fix by the main loop of EvaluateFixes in Algorithm 1. Given

Algorithm 2 Optimized search based on graph coloring.

1: procedure EvaluateFixesOpt(%, �, �all, 3, �)

2: if 3 = 0 return �

3: �good ← ∅

4: initNodes← {⟨root : 5 , curFixes : {5 }⟩ | 5 ∈ � }

5: � ← ConflictGraph(initNodes)

6: for 8 ∈ [1, 3] do

7: groups← Color(�)

8: toRemove← ∅

9: for (∈ 6A>D?B do

10: fixes←
⋃

=∈(=.curFixes

11: % ′ ← ApplyFixes(%, fixes)

12: �′ ← NullAwayErrors(% ′)

13: for = ∈ (do

14: �= ←
⋃

A ∈Regions(=) ErrorsInRegion(�, A)

15: �′= ←
⋃

A ∈Regions(=) ErrorsInRegion(�
′, A)

16: � ′= ← FixLocations(�′=)

17: if |�= | − |�
′
= | ≥ 0 then

18: �good ← �good ∪ {=.curFixes}

19: toRemove← toRemove ∪ {=}

20: end if

21: newFixes← � ′= − �all
22: if newFixes = ∅ then

23: toRemove← toRemove ∪ {=}

24: else

25: =.curFixes← =.curFixes ∪ newFixes

26: end if

27: end for

28: end for

29: � ← ConflictGraph(�.nodes − toRemove)

30: end for

31: return �good
32: end procedure

33: procedure ConflictGraph(#)

34: conflictEdges← {(=1, =2) | =1, =2 ∈ #

35: ∧ Regions(=1) ∩ Regions(=2) ≠ ∅}

36: return ⟨nodes : #, edges : conflictEdges⟩

37: end procedure

38: procedure Regions(=)

39: return
⋃

5 ∈=.curFixes potentially-impacted regions for 5

40: end procedure

a set of nodes, the ConflictGraph procedure constructs a conflict

graph, which contains an (undirected) edge between nodes =1 and

=2 iff the potentially-impacted regions for the fixes in =1 .curFixes

and =2 .curFixes overlap. With this representation, the fixes for any

two non-adjacent nodes are independent, and the impacts of all

their fixes may be evaluated simultaneously.

After constructing an initial conflict graph (line 5), Evaluate-

FixesOpt proceeds by iterating up to the depth limit (starting at

line 6), similar to the line 20 loop in EvaluateFixes in Algorithm 1.

In each iteration, the algorithm computes sets of independent fixes

by coloring the current conflict graph (line 7). The Color routine

returns a set of sets of nodes groups, where for each set (∈ 6A>D?B ,

no pair of nodes in (is adjacent in� . Hence, fixes corresponding to

1399

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan

all nodes in (can be evaluated simultaneously in a single NullAway

run. Our implementation uses a greedy coloring algorithm [18],

which produces sufficiently good results for our needs.

For each group ((line 9), we apply all current fixes for all nodes

in that group simultaneously, and run NullAway to compute an

updated set of errors (lines 10 to 12). This yields a single new set of

errors �′, from which we must extract the errors specific to each

node =, to determine if =’s fixes reduce the error count. We can do

so by finding original and new errors only in the impacted regions

for = (lines 14 and 15), which are guaranteed not to overlap with

any other node in (. The logic in lines 16–26 is analogous to that in

lines 23–33 in Algorithm 1, except that instead of breaking out of the

loop when a fix is fully handled, the corresponding node is marked

for removal from the conflict graph. After processing all groups, we

recompute the conflict graph (line 29) after removing marked nodes,

and continue to the next depth level. Recomputing the conflict graph

is needed even if no nodes are removed, as the list of current fixes

for each node may have changed, impacting the required edges

between nodes. In the end, EvaluateFixesOpt returns the same

result as EvaluateFixes from Algorithm 1 for the same inputs, but

with a smaller number of calls to NullAwayErrors.

3

2 4

5

Figure 2: Conflict graph

in first iteration of Algo-

rithm 2 run on Figure 1.

Example. Consider applying Al-

gorithm 2 to the Figure 1 example,

again with 3 = 2. Figure 2 shows

the initial conflict graph for the ex-

ample, capturing which fixes have

overlapping impacted regions. The

coloring of Figure 2 shows that fixes

2, 4, and 5 can all be evaluated with

a single call to NullAwayErrors.

Overall, the same final result is com-

puted, but with 5 calls toNullAway-

Errors as compared to 7 for Algo-

rithm 1; real-world improvements

are more dramatic (see Section 8).

5 CLIENT CODE

Real-world code bases are often composed of many inter-dependent

modules, to enable more scalable development with large teams.

For scalability and ease of review, it would be very useful to be

able to apply nullability inference one module at a time for such

projects. As described thus far, our inference algorithm accounts for

NullAway errors within the code being annotated, which we term

the target code. In a multi-module scenario, the target code would

be the single module being annotated. However, our presented

technique does not yet account for potential NullAway errors in

other modules dependent on the module being annotated, which we

refer to as client code. Ignoring client code can lead to undesirable

inference results. For example, if a public method m has no calls

from within target code, inference will assume that making m’s

return type @Nullable will not introduce any new errors, even if

client code assumes m does not return null. Here we describe an

inference extension to account for assumptions made by clients of

the target code, crucial for usability in practice.

A naïve approach to handling client code could simply compile

all client code alongside the target in each build and observe the

impact of fixes in clients. We assume annotations cannot be added

to client code, so errors should only be treated as fixable if the fix

location is in the target. Unfortunately, this approach does not scale

to a large amount of client code (even with the optimizations of

Section 4), as each individual build becomes much more expensive

when all client code is included.

Instead, we handle client code via up-front caching of the impacts

of fixes on clients. For simplicity, here we assume that client code

only interacts with the target via calls to public methods; field

accesses and method overriding can be handled similarly. Under

this assumption, fixes in the target may impact the client in two

ways: (1) making a public return type @Nullable may cause new

client NullAway errors, and (2) making a public parameter type

@Nullablemay remove client errors. Before our core search, we run

up-front builds of client code to find and cache the client impacts

for each such fix; we then use the cached information during the

search and only build the target code. Empirically, the number of

up-front builds required was far fewer than the number of builds

run during the search (see Section 8), so overall this caching yields

a large speedup.

Our caching phase runs the following builds. First, we build the

client code with unmodified target code, and cache all NullAway

errors in client code caused by passing a @Nullable expression to a

@NonNull target method parameter (case (2) above). Then, we run

builds to cache the client errors introduced by making each public

target method return @Nullable (case (1) above), noting when such

errors have a fix location in the target. We dramatically reduce

the number of such builds needed for this phase by re-using the

graph coloring optimization of Section 4.2. With fully-cached in-

formation about relevant client errors and their fix locations, we

augment Algorithms 1 and 2 to use this information during the

search, requiring no further client code builds.

Result equivalence. The caching scheme described above can be

generalized to cache the errors caused by any potential fix, whether

in target or client code. This more extensive caching could yield

further search speedups: when applying a set of fixes � , if the

impacts of all fixes in � are already cached, the cached information

could be used to compute the overall impact of � , avoiding a run of

NullAway. Unfortunately, in certain cases the combined impacts of

individual fixes in � are not equivalent to the impact of applying all

fixes in � together. This occurs because it is possible for a new error

to appear only when a pair of fixes is introduced, but not when

either fix is added individually. Consider this excerpt:

class C {

Object f1 = new Object();

Object f2 = new Object();

[...]

void m() {

f1 = f2;

f1.toString();

}

}

Say that due to NullAway errors in other code (not shown), the

search considers making f1 and f2 @Nullable. NullAway reports

a dereference-of-@Nullable error at the f1.toString() call only if

1400

Practical Inference of Nullability Types ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

both f1 and f2 are @Nullable. If just f1 is @Nullable, no error is

reported, since f2 is @NonNull and assigned to f1 before the call. If

just f2 is @Nullable, an error is reported at the f1 = f2 assignment,

but not at the call. Due to such cases, cached information may

under-estimate the number of NullAway errors reported when

multiple fixes are applied simultaneously. In our evaluation, we

never observed unexpected NullAway errors in client code due to

this issue.

Weighting. A question remains of how to weight client vs. target

NullAway errors during the inference search. E.g., for a small target

with a large amount of client code, one maywant to weight errors in

the target more highly than errors in clients. By default, NullAway-

Annotator weights all errors equally, but different weightings can

easily be supported.

At Uber, NullAwayAnnotator is being used to annotate indi-

vidual modules in a “monorepo” [33] containing hundreds of mod-

ules. Some modules are already checked with NullAway, and a key

requirement for NullAwayAnnotator is that no new NullAway

errors should be introduced in other modules when annotating a tar-

get. This feature eases code review, since the changes introduced by

NullAwayAnnotator are thereby limited to semantics-preserving

changes to exactly one module, requiring limited review. Before

imposing this requirement, we observed cases where NullAway-

Annotator changes caused new errors in dozens of other modules:

the fixes for these errors required reviews from many teams and

dramatically slowed adoption.

For this scenario, NullAwayAnnotator includes a strict mode,

in which it only adds annotations to the target if they do not cause

new errors in other modules. (In essence, strict mode applies an

infinite weight to client errors.) Strict mode may increase the final

number of remaining NullAway errors in the target. However, it

makes adoption of changes from NullAwayAnnotator much

easier, and as noted in Section 2.2, getting these changes merged

quickly provides an immediate benefit, as new code and most code

modifications in the target then benefit from NullAway checking.

6 INITIALIZATION

Beyond the checks discussed so far, NullAway also checks for

correct object initialization. Consider the example of Figure 3. The

t1, t2, and t3 fields are treated as @NonNull by default. However, the

TestInit constructor fails to initialize the fields, so they could still

be null at later reads (e.g., if useFields were called immediately

after the constructor). Hence, NullAway reports an initialization

error for the constructor. Our inference technique can handle such

a case by inserting a @Nullable annotation on all three fields, which

removes the error. However, this leads to three new dereference-

of-@Nullable errors in the useFields method, and hence does not

decrease the error count.

NullAway also supports initializer methods to capture cases

where fields are initialized after object construction but before

any use [4]. For the Figure 3 example, assume the intended lifecy-

cle of TestInit is that after construction, the init method should

be invoked before any other method in the class. Then, the deref-

erences in useFields are safe, as they will only occur after init

has run. Such protocols arise regularly in practice, e.g., for An-

droid activities [1]. NullAway treats any method annotated with

1 class TestInit {

2 Object t1, t2, t3;

3 TestInit() {}

4 +@Initializer

5 void init(Object o1, Object o2, Object o3) {

6 t1 = o1;

7 t2 = o2;

8 t3 = o3;

9 }

10 int useFields() {

11 // no null checks needed here

12 return t1.hashCode() + t2.hashCode()

13 + t3.hashCode();

14 }

15 }

Figure 3: Example for illustrating initialization checks.

@Initializer as a method that runs before all other methods in

the class, and reasons about field initialization in such methods

appropriately. NullAway does not check that client classes actually

invoke @Initializer methods before other methods, and hence its

handling of this feature is unsound [4].

Our approach includes limited support for inferring @Initializer

annotations. Since NullAway’s support for @Initializer is unsound,

we devised our approach to infer @Initializer under narrow con-

ditions, aiming to avoid introducing incorrect annotations. We only

add @Initializer to a method< if the following holds:

(1) < must write a @NonNull value to at least two otherwise-

uninitialized fields, and those fields cannot be overwritten

with a @Nullable value before< returns.

(2) There can be at most one inferred @Initializer method per

class. If more than one method in<’s class meets condition

1,< must be the method that initializes the most fields.

Inference of @Initializer occurs in a separate pass, before running

Algorithm 2, so that the core search does not insert @Nullable an-

notations on fields that are never null once @Initializer methods

are considered. For the Figure 3 example, our approach would add

an @Initializer annotation to init, thereby removing all errors

reported for the class. In our evaluation, we inspected all intro-

duced @Initializer annotations to check that they reflected actual

lifecycle behavior (see Section 8).

7 IMPLEMENTATION

We have implemented our approach in a tool NullAwayAnno-

tator, which is open source.3 To compute potentially-impacted

regions for fixes (Section 4.1), we implemented a code structure

scanner as an Error Prone plugin checker [12], which runs as part

of the Java compilation process (like NullAway). This scanner seri-

alizes the relevant information about uses of fields, uses of methods,

and the type hierarchy, as computed by the Java compiler. The

scanner is implemented in 1,220 (non-blank, non-comment) lines

of Java code.

3https://github.com/ucr-riple/NullAwayAnnotator

1401

https://github.com/ucr-riple/NullAwayAnnotator

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan

A separate component handles insertion of annotations into

source code. It leverages JavaParser [19] to discover annotation in-

sertion locations, and then inserts annotations using string manip-

ulation to ensure whitespace is preserved. Whitespace preservation

is critical for making the tool usable in practice, as any unneces-

sary formatting modifications make changes harder to review. The

injector is implemented in 1,522 lines of Java code.

Finally, the core optimized search of NullAwayAnnotator

(Section 4.2) is implemented in roughly 4,300 lines of Java code. To

run NullAwayAnnotator, a developer must integrate NullAway

and the code structure scanner as part of their compilation scripts.

NullAwayAnnotator is build-system independent, as a variety

of build systems are in common use in the Java ecosystem. For ease

of implementation, we made minor modifications to NullAway to

serialize its output in a machine-readable format. This output could

have been parsed directly from NullAway’s error messages, but at

greater engineering cost.

8 EVALUATION

In this section, we present an experimental evaluation of Null-

AwayAnnotator, showing the effectiveness of its inferred annota-

tions and of our performance optimizations.

8.1 Experimental setup and research questions

We evaluated NullAwayAnnotator on two separate datasets of

Java code bases. First, we used a collection of 14 open-source Java

projects from GitHub. From the most popular Java projects on

GitHub (as determined by number of stars), we chose 13 projects

that use the Gradle build system [14], to ease integration of Null-

Away andNullAwayAnnotator’s configuration. To ensure greater

diversity in the benchmarks, we limited the number of Android

projects to five. Finally, we included WALA:Util, a module from the

WALA static analysis library [37] maintained by one of the authors,

to evaluate adopting NullAway via NullAwayAnnotator on an

open-source project (see Section 8.4). We did not create a larger

suite of open-source benchmarks due to the manual effort required

to integrate NullAway and NullAwayAnnotator into the build

scripts of each benchmark.

Second, we used a set of 8 modules from Uber’s repository of

Java server code. These targets (T1 to T8) were selected on the basis

of a one-week sampling of production crash logs. They represented

the top-8 targets by NPE count in this dataset, excluding one target

on which NullAwayAnnotator crashed and any targets that were

already enrolled in NullAway (which may still contain NPEs due to

third-party libraries [4]). At the time of our evaluation, targets T1

to T8 were not already enrolled onto NullAway using NullAway-

Annotator; we avoided previously-enrolled targets so that all

experiments could be run with a single tool version. See Section 8.4

for further discussion regarding real-world usage of NullAwayAn-

notator to enroll targets.

Table 1 gives the size and type of each benchmark. While the

open-source dataset represents standalone programs and libraries,

the Uber dataset consists of build targets: program modules built

and unit tested independently, but which serve as part of one or

more production services.

Table 1: Benchmark types and sizes, and the error reduction

from NullAwayAnnotator at depths 0, 1, and 5.

Benchmark Name KLoC
Number of Errors

Initial Depth 0 Depth 1 Depth 5

O
p
en

So
u
rc
e
P
ro
je
ct
s

Framework

Conductor 9.2K 159 170 (+6.9%) 44 (-72.3%) 30 (-81.1%)

Mockito 17.6K 205 95 (-53.7%) 47 (-77.1%) 30 (-85.4%)

SpringBoot 35.1K 777 204 (-73.7%) 184 (-76.3%) 77 (-90.1%)

Game Engine

LitiEngine 30.1K 480 468 (-2.5%) 191 (-60.2%) 184 (-61.7%)

LibGdx 92.1K 1549 2314 (+49.4%) 516 (-66.7%) 442 (-71.5%)

Libraries

MPAndroid 16.1K 174 489 (+181.0%) 64 (-63.2%) 53 (-69.5%)

Glide 24.6K 287 195 (-32.1%) 112 (-61.0%) 105 (-63.4%)

EventBus 1.9K 49 18 (-63.3%) 12 (-75.5%) 10 (-79.6%)

Gson 8.0K 161 38 (-76.4%) 39 (-75.8%) 28 (-82.6%)

Eureka 8.0K 74 70 (-5.4%) 31 (-58.1%) 25 (-66.2%)

Retrofit 3.6K 26 13 (-50.0%) 13 (-50.0%) 13 (-50.0%)

Compiler Tools

Jadx 39.8K 493 865 (+75.5%) 132 (-73.2%) 124 (-74.8%)

WALA:Util 19.5K 190 294 (+54.7%) 88 (-53.6%) 76 (-60.0%)

Network Library

Zuul 15.2K 204 43 (-78.9%) 31 (-84.8%) 23 (-88.7%)

U
b
er

T1 35.7K 537 454 (-15.5%) 200 (-62.8%) 187 (-65.2%)

T2 81.7K 1072 991 (-7.6%) 328 (-69.4%) 310 (-71.1%)

T3 12.9K 229 134 (-41.5%) 46 (-79.9%) 31 (-86.5%)

T4 20.1K 111 70 (-36.9%) 70 (-36.9%) 70 (-36.9%)

T5 13.8K 222 192 (-13.5%) 126 (-43.2%) 126 (-43.2%)

T6 3.4K 47 61 (+29.8%) 10 (-78.7%) 9 (-80.9%)

T7 5.9K 35 28 (-20.0%) 21 (-40.0%) 19 (-45.7%)

T8 14.8K 301 166 (-44.9%) 91 (-69.8%) 76 (-74.8%)

Using these two datasets, we seek to answer the following key

research questions:

(1) Is NullAwayAnnotator effective in reducing the number

of reported NullAway errors for these benchmarks?

(2) How does our technique compare with the strategy of ap-

plying all possible fixes, in terms of error reduction?

(3) What is the impact of the depth limit (see Section 3) on tool

effectiveness, in terms of number of errors removed and

running time?

(4) How much do our optimizations (Section 4) reduce running

time over unoptimized?

(5) Is the output of NullAwayAnnotator an adequate basis to

enable NullAway checking on previously-unannotated code

in a production setting?

Section 8.2 addresses questions 1–3, Section 8.3 addresses question

4, and Section 8.4 addresses question 5.

Experiments for open-source benchmarks were performed on a

desktop with an 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz 8

core CPU and 32GB RAM running Ubuntu 20.04.5 LTS. Experiments

at Uber were performed inside a Linux container on a shared AMD

EPYC 2.45GHz machine, with 24 cores per socket and 2 sockets

reporting 377 GB of RAM. We did not have dedicated access to this

machine during our measurements, but it usually stayed at low

utilization during experiments.

1402

Practical Inference of Nullability Types ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

8.2 Error count reduction and depth bound

We first evaluated the effectiveness of NullAwayAnnotator at

reducing the number of errors reported by NullAway. Data on

this error reduction after running NullAwayAnnotator with

various depth limits is shown in Table 1, with percentage changes

in parentheses. The Initial column gives the number of NullAway

errors before running inference. We show error reduction with

depth limits 0, 1, and 5. Recall from Section 3 that a depth limit of

0 corresponds to eagerly inserting all possible fixes, ignoring the

impact on error count.

Eager insertion of all possible fixes (depth limit 0) always yields

more remaining errors than depth 1, and sometimes yields a higher

number of errors than were reported on the original code! E.g., for

LibGdx, the number of reported NullAway errors increases from

1549 to 2314 (49% more errors) at depth 0, and for MpAndroid the

number of errors increases by 181%. These results show that our

search strategy produces a final result with many fewer errors than

performing eager @Nullable insertion.

To determine the impact of the depth limit, we ran NullAway-

Annotator with limits of 1–10 across all of our benchmarks. We

observed that the final number of errors was never reduced further

going beyond depth 5. Also, the running time at depth 5 was an

average of 2.24X the depth 1 running time, a reasonable cost. So, on

our benchmarks we concluded that depth 5 yielded the best tradeoff

between performance and error reduction, and we used that depth

limit for all subsequent experiments.

At depth 5, we saw an average reduction of 69.5% in the num-

ber of NullAway errors reported when compared to the initial

code, ranging from 36.9% (for the T4 Uber target) to 90.1% (for

SpringBoot). The significant reduction of errors from running

NullAwayAnnotator has multiple benefits: it enables more code

to be checked immediately by NullAway via warning suppressions

(see Section 8.4), and it reduces the effort required to eventually

enroll all the code in NullAway checking.

8.3 Impact of optimizations

Next, we evaluated the performance impact of our graph-coloring

optimizations (Section 4), and our results appear in Table 2. All con-

figurations were run with a depth limit of 5 and a timeout of 8 hours.

We show both the overall running time in minutes, and also the

number of NullAway builds run in each configuration (nearly all ex-

ecution time of NullAwayAnnotator is spent running NullAway

builds, on average over 97% of running time for our open-source

benchmarks). For our benchmarks, we observe enormous reduc-

tions in running times with the graph coloring optimization over

unoptimized; the speedups range from 2.0X–17.8X, with an average

of 6.1X. Further, for T1 and T2 we could not measure the speedup,

as the unoptimized run could not complete within an 8-hour limit.

We observe a similarly-large reduction in number of builds re-

quired with optimizations enabled, showing that a significant num-

ber of the qualifiers evaluated by our search are in fact independent.

Regarding the number of up-front builds required for client code

(Section 5), we observed an average of 2.4 builds and a maximum of

8 across our benchmarks, small compared to the number of builds

Table 2: Running time and number of builds for unoptimized

and optimized configurations.

Benchmark Name
Time (Minutes) Number of builds

Unoptimized Optimized Unoptimized Optimized

O
p
en

So
u
rc
e
P
ro
je
ct
s

Conductor 28.9 6.3 (4.6X) 351 115 (3.1X)

Mockito 25.3 3.0 (8.4X) 383 71 (5.4X)

SpringBoot 461.7 26.0 (17.8X) 1427 113 (12.6X)

LitiEngine 59.0 5.1 (11.5X) 1122 98 (11.4X)

LibGdx 339.2 27.7 (12.2X) 2320 195 (11.9X)

MPAndroid 33.4 9.8 (3.4X) 402 119 (3.4X)

Glide 28.9 5.1 (5.7X) 455 104 (4.4X)

EventBus 1.5 0.5 (3.0X) 77 26 (3.0X)

Gson 9.2 1.8 (5.1X) 181 66 (2.7X)

Eureka 6.5 2.4 (2.7X) 198 72 (2.8X)

Retrofit 0.6 0.3 (2.0X) 22 12 (1.8X)

Jadx 68.7 10.5 (6.5X) 868 126 (6.9X)

WALA:Util 76.11 12.37 (6.2X) 547 76 (7.2X)

Zuul 25.3 2.3 (11.0X) 206 58 (3.6X)

U
b
er

T1 X 70.02 (-) 593+ 77 (-)

T2 X 114.02 (-) 706+ 89 (-)

T3 183.19 44.42 (4.1X) 404 91 (4.4X)

T4 33.02 13.74 (2.4X) 53 18 (2.9X)

T5 292.06 61.28 (4.8X) 559 110 (5.1X)

T6 24.01 9.75 (2.5X) 59 19 (3.1X)

T7 31.64 12.48 (2.5X) 72 22 (3.3X)

T8 374.44 71.69 (5.2X) 842 154 (5.5X)

Table 3: Number of annotations injected by NullAwayAn-

notator.

Benchmark Name
Depth 5 Suppress-only

@Nullable # Suppression % unchecked % unchecked

O
p
en

So
u
rc
e
P
ro
je
ct
s

Conductor 319 31 5.95% 22.6%

Mockito 322 31 3.6% 14.82%

SpringBoot 1331 81 1.99% 12.03%

LitiEngine 993 158 5.85% 12.08%

LibGdx 1426 459 4.77% 10.04%

MPAndroid 253 66 2.49% 6.27%

Glide 370 99 5.68% 9.57%

EventBus 71 9 5.44% 14.97%

Gson 202 21 5.2% 18.42%

Eureka 138 30 6.04% 11.71%

Retrofit 27 10 16.79% 17.1%

Jadx 509 139 4.98% 12.18%

WALA:Util 165 67 4.27% 7.66%

Zuul 164 27 5.13% 9.15%

U
b
er

T1 501 177 8.54% 13.16%

T2 863 290 8.59% 15.09%

T3 320 28 3.89% 19.55%

T4 322 46 10.15% 13.64%

T5 231 103 14.61% 20.67%

T6 35 10 2.12% 10.18%

T7 88 19 4.42% 6.52%

T8 656 81 8.64% 7.66%

required during search. We conclude that the graph-coloring opti-

mization provides an enormous benefit and is essential for making

NullAwayAnnotator practical for larger programs.

1403

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan

8.4 Tool output and real-world usage

Here, we characterize the inferred annotations discovered by Null-

AwayAnnotator and describe its real-world usage thus far. Table 3

gives data on the final solutions found by NullAwayAnnotator

for our benchmarks. For depth 5, we show the number of @Nullable

annotations inferred, the number of annotations inserted to sup-

press remaining warnings, and the percentage of code that remains

unchecked by NullAway due to these suppressions. We also show

the percentage of unchecked code for a baseline configuration, in

which all the errors initially reported by NullAway are suppressed

(without running inference). Due to a tool bug, for one benchmark

(T5) we added one suppression annotation manually.

The number of @Nullable annotations inserted byNullAwayAn-

notator is significant (up to 1,426), reflecting the large amount of

manual work otherwise required to adopt NullAway. After suppres-

sions were inserted at depth 5, the percentage of unchecked code

ranged from 1.99% to 16.79%, with an average of 6.32%. In compari-

son to the baseline of suppressing with no inference, the percentage

of unchecked code decreased by an average factor of 2.54X (0.89X

to 6.05X). For the one target where the amount of unchecked code

increased with inference (the Uber T8 module), the baseline sup-

presses many uninitialized field warnings at the field declarations,

while inference makes the fields @Nullable and adds suppressions

on certain methods using the fields. Even though inference adds

many fewer suppressions (81 vs. 362 for the baseline), due to the

placement of these suppressions on methods rather than fields, the

amount of unchecked code becomes higher. Table 1 shows that

inference still dramatically reduces the number of NullAway errors

for this benchmark.

Overall, the data show that our inference allows for a much

greater amount of existing code to be immediately checked by

NullAway, yielding greater safety for future code modifications

with no manual effort.

InitializersWemanually inspected all injected @Initializer anno-

tations, and all were correct except for two in LibGdx. For the bad

cases, the method was in fact a setter not involved in initialization,

though it assigned values to multiple fields. In the future, we believe

we can make @Initializer inference more accurate by leveraging

method naming patterns (e.g., including methods with names like

init while excluding methods whose names start with set).

DeploymentNullAwayAnnotator has been deployed at Uber for

self-serve use by developers. Thus far, it has been used to enroll 160

modules in NullAway checking, consisting of roughly 1.365 million

lines of Java code. Running NullAwayAnnotator on production

modules led to many bug fixes and improvements in the tool it-

self, e.g., handling of code generation by annotation processors.

The main lesson from our experience thus far is that NullAway-

Annotator changes should as much as possible be scoped to a

single module and be semantics-preserving, to avoid long code

review cycles (see Section 5). A key issue with extended code re-

view is that the target and client code keeps evolving, and keeping

the inferred changes consistent with the evolving code requires

significant manual effort.

We also used NullAwayAnnotator to enable NullAway check-

ing for the WALA:Util open-source module, maintained by one of

the paper authors. Here, we again found NullAwayAnnotator’s

support for analyzing client code to be useful, as WALA:Util is

used by many other modules in the project, and we wanted the

annotations to capture that usage behavior. In studying the final

output, we found several places where NullAwayAnnotator in-

ferred a @Nullable annotation for a field or method parameter, but

the author would have preferred to refactor the code to make that

location @NonNull. Automatically performing such code refactor-

ings and repairs is out of scope for NullAwayAnnotator, but is a

fruitful avenue for further research.

The @Nullable annotations discussed above could be consid-

ered “false positives” since they do not match the annotations a

developer would have written by hand; we expect that similar

cases may have occurred in our other benchmarks. We have found

that in such cases, introducing the desired developer annotations

usually also requires modifying executable program code. Any

change that modifies executable code require much deeper review

than the changes generated by NullAwayAnnotator, which are

semantics-preserving. For effective deployment, we believe future

repair approaches would be best deployed in combination with

NullAwayAnnotator; NullAwayAnnotator’s changes would

enable immediate NullAway checking with no review required,

and subsequent automated repair patches could be reviewed and

incorporated gradually.

8.5 Threats to Validity and Limitations

The main threat to the external validity of our evaluation is our

choice of benchmarks. We strove to choose a diverse set of bench-

marks in a principled manner (see Section 8.1). Still, it is possible

that on less popular open-source benchmarks, or on benchmarks

using build systems besides Gradle, NullAwayAnnotator will

be less effective. And, it is possible that NullAwayAnnotator is

particularly effective for code written in the style used at Uber, but

that it will be less effective for other proprietary code. Regarding

internal validity, our results may be impacted by implementation

bugs in NullAwayAnnotator. To combat this issue, NullAway-

Annotator has an extensive suite of unit and integration tests.

Further, for all benchmarks, we verified that the final result of

NullAwayAnnotator was exactly the same with and without

optimizations enabled. We have also manually vetted the output of

NullAwayAnnotator on several Uber targets.

A limitation of NullAwayAnnotator is that it does not support

inference of all annotations supported by NullAway. We do not yet

support inference of @Contract, @RequiresNonNull, and @Ensures-

NonNull annotations, used to express pre- and post-conditions (e.g.,

that some field of a parameter must be @NonNull at method entry).

We focused on inference of @Nullable annotations initially, since it

provides a large benefit on its own, but we plan to support inference

of pre- and post-condition annotations in the future. Other nullness

checkers [28, 31] support writing type qualifiers on generic type

arguments (e.g., List<@Nullable String>), but NullAway does not.

NullAwayAnnotator does not currently support inference of

such qualifiers, but we are working to extend it with such support.

9 RELATED WORK

There is a wide and rich literature on classical type inference (or

type reconstruction) [32, Chapter 22], which focuses on discovering

1404

Practical Inference of Nullability Types ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

whether there exists a (complete) typing for an unannotated pro-

gram in a given type system. Our problem differs from the classical

case as we nearly always target programs where no such typing

exists, and our goal is to find a maximal set of useful type qualifiers

for such programs. As such, we focus our related work discussion

on techniques more closely related to our target scenario, and do

not discuss type inference work more broadly.

Checker Framework Inference [7] uses constraint-based analysis

to infer types, and the approach has been applied successfully to

a type systems for measurement units [38]. This approach solves

the constraints using MaxSAT, which could be adapted to output a

partial typing for the program when the constraints are unsatisfi-

able. Previous approaches to improved error explanation for type

inference [23, 29, 39] and migration of dynamically-typed programs

to use gradual types [6, 25, 30] are also based on constraints, and

could be similarly adapted. However, as noted in Section 1, we re-

quire reuse of an existing checker implementation for our scenario,

and cannot re-implement the checker using constraints.

The Checker Framework includes whole-program inference

(WPI) functionality [20] that works with unmodified pluggable

type system implementations. The technique works by inserting

the most specific type qualifier compatible with all expressions

written into an entity (a field, parameter, or return value), running

to a fixed point. WPI is integrated into the Checker Framework, and

hence can infer many annotations from a single run. Our technique

treats the checker as a black box, necessitating the optimizations

of Section 4 for better performance. Our less-coupled approach

makes it potentially easier to combine our technique with other

checker implementations, and we plan to explore integrations with

the Checker Framework. WPI is not guided by minimizing the fi-

nal number of errors reported; its strategy resembles that of our

eager insertion of qualifiers, which Section 8 showed can increase

the final number of errors. Also, our technique aims to generate

annotations a developer would accept into their source code. WPI

may generate many annotations unrelated to any reported error,

which developers are unlikely to incorporate (to minimize clutter).

The Daikon dynamic invariant detector [11] can infer @Nullable

annotations from dynamic behaviors [8]. This approach infers a

@Nullable qualifier only for locations observed to be null at runtime,

a guarantee that any static approach cannot provide. As with any

dynamic approach, it requires that the target code to be executable

by the tool and that some set of suitable inputs is available. Static

approaches like ours are complementary, as they need not be able to

execute the program and can account for all possible code behaviors.

Cascade [36] is an interactive type qualifier inference tool that

involves programmers in the inference process. Cascade also targets

programs where code changes are likely to be required to make the

code type check. NullAwayAnnotator aims to automate more of

the qualifier inference process than Cascade. The two approaches

are complementary; after adopting the initial annotations proposed

by NullAwayAnnotator, a developer could use a Cascade-like

tool to aid in gradually fixing the remaining errors.

Recent work has applied modern machine learning techniques

to type inference [16, 34] and to program repair whose fixes may

include type qualifier insertion [3]. We have not yet pursued such

techniques due to the amount of training data required; we are

not aware of a publicly-available data set showing how @Nullable

qualifiers are inserted to address type errors. In the future we plan

to investigate generation of training data [5] to further enable a

learning-based approach. Note that TypeWriter [34] also uses black-

box executions of an extant type checker to evaluate candidate

types; we believe our graph-coloring optimization could be used to

reduce the number of type checker runs required by their technique.

10 CONCLUSIONS

We have presented a novel approach to inference of nullability qual-

ifiers for Java programs, to enable applying nullness type checkers

to extant code bases. In contrast to many other techniques, our

approach treats the type checker as a black-box oracle and does

not require re-implementation of its logic. We defined an effective

search strategy for discovering a good set of qualifiers to insert,

and presented optimizations to dramatically speed up the search.

We implemented our approach in an open-source tool NullAway-

Annotator and evaluated it on both open-source and commercial

code bases. Our evaluation showed that NullAwayAnnotator

scaled well, and that the inferred annotations significantly reduced

the number of errors reported, enabling NullAway checking for

more existing code. NullAwayAnnotator has already been used

to enable NullAway checking for 160 production modules at Uber.

In future work, we plan to generalize our approach to other static

type and type-qualifier systems.

11 DATA AVAILABILITY

NullAwayAnnotator is open source and available at https://

github.com/ucr-riple/NullAwayAnnotator. Further, we have made

an artifact available at https://zenodo.org/record/8271236 contain-

ing the code for NullAwayAnnotator and scripts to run it on our

open-source benchmarks.

ACKNOWLEDGMENTS

We would like to thank all the Uber developers who contributed to

this work by using NullAwayAnnotator to annotate their code

and providing feedback on the tool, with special thanks to Ameya

Ketkar, Sonal Mahajan, Yuxin Wang, Raj Barik, and Swati Gupta

for their help coordinating the initial code enrollments.

This research was supported in part by the National Science

Foundation under grants CCF-2007024 and CCF-2312263, a gift

from Oracle Labs, and a Google Research Award. This research

was partially sponsored by the OUSD(R&E)/RT&L and was ac-

complished under Cooperative Agreement Number W911NF-20-2-

0267. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the ARL and

OUSD(R&E)/RT&L or the U.S. Government. The U.S. Government

is authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation herein.

REFERENCES
[1] ActivityLifecycle 2022. The Activity Lifecycle. https://developer.android.com/

guide/components/activities/activity-lifecycle. Accessed: 2022-04-12.
[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA.

1405

https://github.com/ucr-riple/NullAwayAnnotator
https://github.com/ucr-riple/NullAwayAnnotator
https://zenodo.org/record/8271236
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan

[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (oct 2019), 27 pages. https://doi.org/10.1145/3360585

[4] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. 2019. NullAway: Practical
Type-based Null Safety for Java. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). https://doi.org/10.1145/3338906.3338919

[5] Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin T. Vechev. 2021. TFix:
Learning to Fix Coding Errors with a Text-to-Text Transformer. In Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina
Meila and Tong Zhang (Eds.). PMLR, 780–791. http://proceedings.mlr.press/
v139/berabi21a.html

[6] John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2018.
Migrating Gradual Types. Proc. ACM Program. Lang. 2, POPL, Article 15 (2018),
29 pages. https://doi.org/10.1145/3158103

[7] CFInference 2022. Checker Framework Inference. https://github.com/opprop/
checker-framework-inference. Accessed: 2022-04-02.

[8] DaikonNullable 2022. Daikon AnnotateNullable support. http://plse.cs.
washington.edu/daikon/download/doc/daikon.html#AnnotateNullable. Ac-
cessed: 2022-04-12.

[9] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd
Schiller. 2011. Building and using pluggable type-checkers. In ICSE 2011, Pro-
ceedings of the 33rd International Conference on Software Engineering. Waikiki,
Hawaii, USA, 681–690. https://doi.org/10.1145/1985793.1985889

[10] Eradicate 2022. Infer : Eradicate. https://fbinfer.com/docs/checker-eradicate
Accessed: 2022-04-07.

[11] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming 69, 1–3
(Dec. 2007), 35–45. https://doi.org/10.1016/j.scico.2007.01.015

[12] ErrorProne 2022. Error Prone. http://errorprone.info/ Accessed: 2022-04-07.
[13] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A Theory of Type

Qualifiers. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Atlanta, Georgia, USA, May 1-4, 1999.
192–203. https://doi.org/10.1145/301618.301665

[14] Gradle 2022. Gradle Build Tool. https://gradle.org. Accessed: 2022-04-03.
[15] gRPC 2022. gRPC. https://grpc.io. Accessed: 2022-04-07.
[16] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis.

2018. Deep Learning Type Inference. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 152–162.
https://doi.org/10.1145/3236024.3236051

[17] David Hovemeyer, Jaime Spacco, and William Pugh. 2005. Evaluating and Tun-
ing a Static Analysis to Find Null Pointer Bugs. In Proceedings of the 6th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (Lisbon, Portugal) (PASTE ’05). Association for Computing Machinery,
New York, NY, USA, 13–19. https://doi.org/10.1145/1108792.1108798

[18] Thore Husfeldt. 2015. Graph colouring algorithms. https://doi.org/10.48550/
ARXIV.1505.05825 arXiv pre-print 1505.05825.

[19] JavaParser 2022. JavaParser. https://javaparser.org. Accessed: 2022-04-02.
[20] Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, and

Michael D. Ernst. 2023. Pluggable type inference for free. In ASE 2023: Proceedings
of the 38th Annual International Conference on Automated Software Engineering.

[21] Kotlin 2022. Kotlin Programming Language. https://kotlinlang.org/. Accessed:
2022-04-07.

[22] Alexey Loginov, Eran Yahav, Satish Chandra, Stephen Fink, Noam Rinetzky, and
Mangala Nanda. 2008. Verifying Dereference Safety via Expanding-Scope Analy-
sis. In Proceedings of the 2008 International Symposium on Software Testing and
Analysis (Seattle, WA, USA) (ISSTA ’08). Association for Computing Machinery,
New York, NY, USA, 213–224. https://doi.org/10.1145/1390630.1390657

[23] Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridharan. 2016. A
Practical Framework for Type Inference Error Explanation. SIGPLAN Not. 51, 10
(oct 2016), 781–799. https://doi.org/10.1145/3022671.2983994

[24] Ravichandhran Madhavan and Raghavan Komondoor. 2011. Null dereference ver-
ification via over-approximated weakest pre-conditions analysis. In Proceedings
of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Port-
land, OR, USA, October 22 - 27, 2011. 1033–1052. https://doi.org/10.1145/2048066.
2048144

[25] Zeina Migeed and Jens Palsberg. 2020. What is Decidable about Gradual Types?
Proc. ACM Program. Lang. 4, POPL, Article 29 (2020), 29 pages. https://doi.org/
10.1145/3371097

[26] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-
sures to predict system defect density. In 27th International Conference on Soft-
ware Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, Gruia-
Catalin Roman, William G. Griswold, and Bashar Nuseibeh (Eds.). ACM, 284–292.
https://doi.org/10.1145/1062455.1062514

[27] NAHandlers 2022. NullAway handler implementations. https://github.com/uber/
NullAway/tree/master/nullaway/src/main/java/com/uber/nullaway/handlers.
Accessed: 2022-04-07.

[28] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. 2008. Practical pluggable types for Java. In ISSTA 2008, Proceed-
ings of the 2008 International Symposium on Software Testing and Analysis. Seattle,
WA, USA, 201–212. https://doi.org/10.1145/1390630.1390656

[29] Zvonimir Pavlinovic, Tim King, and Thomas Wies. 2014. Finding Minimum Type
Error Sources. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA) (Portland,
Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York,
NY, USA, 525–542. https://doi.org/10.1145/2660193.2660230

[30] Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun
Guha. 2021. Solver-Based Gradual Type Migration. Proc. ACM Program. Lang. 5,
OOPSLA, Article 111 (oct 2021), 27 pages. https://doi.org/10.1145/3485488

[31] Artem Pianykh, Ilya Zorin, and Dmitry Lyubarskiy. 2023. Retrofitting null-safety
onto Java at Meta. https://engineering.fb.com/2022/11/22/developer-tools/meta-
java-nullsafe/ Accessed: 2023-02-01.

[32] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT
Press.

[33] Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions of Lines
of Code in a Single Repository. Commun. ACM 59, 7 (jun 2016), 78–87. https:
//doi.org/10.1145/2854146

[34] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
Writer: Neural Type Prediction with Search-Based Validation. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. Association for Computing Ma-
chinery, New York, NY, USA, 209–220. https://doi.org/10.1145/3368089.3409715

[35] Swift 2022. Swift Programming Language. https://swift.org/. Accessed: 2022-04-
07.

[36] Mohsen Vakilian, Amarin Phaosawasdi, Michael D. Ernst, and Ralph E. Johnson.
2015. Cascade: A Universal Programmer-Assisted Type Qualifier Inference Tool.
In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, 234–245.

[37] WALA 2023. T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.
net.

[38] Tongtong Xiang, Jeff Y. Luo, and Werner Dietl. 2020. Precise inference of expres-
sive units of measurement types. Proc. ACM Program. Lang. 4, OOPSLA (2020),
142:1–142:28. https://doi.org/10.1145/3428210

[39] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-Jones.
2017. SHErrLoc: A Static Holistic Error Locator. ACM Trans. Program. Lang. Syst.
39, 4, Article 18 (aug 2017), 47 pages. https://doi.org/10.1145/3121137

Received 2023-02-02; accepted 2023-07-27

1406

https://doi.org/10.1145/3360585
https://doi.org/10.1145/3338906.3338919
http://proceedings.mlr.press/v139/berabi21a.html
http://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.1145/3158103
https://github.com/opprop/checker-framework-inference
https://github.com/opprop/checker-framework-inference
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
https://doi.org/10.1145/1985793.1985889
https://fbinfer.com/docs/checker-eradicate
https://doi.org/10.1016/j.scico.2007.01.015
http://errorprone.info/
https://doi.org/10.1145/301618.301665
https://gradle.org
https://grpc.io
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/1108792.1108798
https://doi.org/10.48550/ARXIV.1505.05825
https://doi.org/10.48550/ARXIV.1505.05825
https://javaparser.org
https://kotlinlang.org/
https://doi.org/10.1145/1390630.1390657
https://doi.org/10.1145/3022671.2983994
https://doi.org/10.1145/2048066.2048144
https://doi.org/10.1145/2048066.2048144
https://doi.org/10.1145/3371097
https://doi.org/10.1145/3371097
https://doi.org/10.1145/1062455.1062514
https://github.com/uber/NullAway/tree/master/nullaway/src/main/java/com/uber/nullaway/handlers
https://github.com/uber/NullAway/tree/master/nullaway/src/main/java/com/uber/nullaway/handlers
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/3485488
https://engineering.fb.com/2022/11/22/developer-tools/meta-java-nullsafe/
https://engineering.fb.com/2022/11/22/developer-tools/meta-java-nullsafe/
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2854146
https://doi.org/10.1145/3368089.3409715
https://swift.org/
http://wala.sourceforge.net
http://wala.sourceforge.net
https://doi.org/10.1145/3428210
https://doi.org/10.1145/3121137

	Abstract
	1 Introduction
	2 Overview
	2.1 Type-Based Nullness Checking
	2.2 Inference Approach
	2.3 Optimizing Performance

	3 Search-Based Qualifier Inference
	4 Optimized Search
	4.1 Potentially-Impacted Regions
	4.2 Optimized Algorithm

	5 Client Code
	6 Initialization
	7 Implementation
	8 Evaluation
	8.1 Experimental setup and research questions
	8.2 Error count reduction and depth bound
	8.3 Impact of optimizations
	8.4 Tool output and real-world usage
	8.5 Threats to Validity and Limitations

	9 Related Work
	10 Conclusions
	11 Data Availability
	Acknowledgments
	References

