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ABSTRACT

Code review is a crucial step in ensuring the quality and main-
tainability of software systems. However, this process can be time-
consuming and resource-intensive, especially in large-scale projects
where a significant number of code changes are submitted every
day. Fortunately, not all code changes require human reviews, as
some may only contain syntactic modifications that do not alter the
behavior of the system, such as format changes, variable / function
renamings, and constant extractions.

In this paper, we propose a multi-language automated code ap-
prover — Last Diff Analyzer for Go and Java, which is able to detect
if a reviewable incremental unit of code change (diff) contains only
changes that do not modify system behavior. It is built on top of a
novel multi-language static analysis framework that unifies com-
mon features of multiple languages while keeping unique language
constructs separate. This makes it easy to extend to other languages
such as TypeScript, Kotlin, Swift, and others. Besides skipping un-
necessary code reviews, Last Diff Analyzer could be further applied
to skip certain resource-intensive end-to-end (E2E) tests for auto-
approved diffs for significant reduction of resource usage. We have
deployed the analyzer at scale within Uber, and data collected in
production shows that approximately 15% of analyzed diffs are auto-
approved weekly for code reviews. Furthermore, 13.5% reduction
in server node usage dedicated to E2E tests (measured by number
of executed E2E tests) is observed as a result of skipping E2E tests,
compared to the node usage if Last Diff Analyzer were not enabled.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

static analysis, code reviews, automated code approver

∗The work was done while the author was at Uber Technologies, Inc.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613870

ACM Reference Format:

Yuxin Wang, Adam Welc, Lazaro Clapp, and Lingchao Chen. 2023. Last Diff
Analyzer: Multi-language Automated Approver for Behavior-Preserving
Code Revisions. In Proceedings of the 31st ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3611643.3613870

1 INTRODUCTION

Producing high quality software is challenging, particularly if its
performance and reliability has a direct impact on the financials,
compliance, and general quality of service of a company where this
software is being developed. Consequently, in large tech compa-
nies, multiple different types of tools and processes are typically
deployed to aid programmers in developing high quality software.
One such tool-assisted process is code reviews — a piece of code
written by a developer is not allowed to be used in production, or
indeed incorporated into the main codebase, until the code has
been reviewed by one or more separate developers. On the tooling
side, this is typically managed by a code review tool which may be
combined with a code revision system responsible for maintaining a
history of the code being developed. An example of such platform
is GitHub [15], which serves both as a code revision platform and
a code review system, but other alternatives exist as well such as
GitLab [16] or, the now discontinued, Phabricator [37].

A typical workflow when using a code review tool looks as
follows. A developer (a.k.a., the author) develops a new feature,
fixes a bug etc., which creates a code revision reflecting a change
between what is currently running in production and the new code
introduced by the author. A revision is itself composed of one or
more code diffs. Initially, there is likely a single diff in the revision,
encompassing all changes made by the developer on top of the latest
observed state of the shared codebase. This revision is sent to a
code revision system where another developer (a.k.a, the reviewer)
reviews the new code to assess its correctness and quality. The
reviewer may accept this new code revision “as-is” in which case
it can be pushed to staging / production environment, though it
would typically also have to go through an automated testing phase
before running it in production is allowed. More often than not,
however, the reviewer has some comments about the new revision
that need addressing by the author before the new code can be
accepted. In order to address these comments, the author creates
a new diff (an incremental set of changes), on top of the existing
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diffs that constitute the revision. Readers familiar with GitHub
may consider a diff akin to a single commit within a GitHub Pull
Request [14].

The review workflow, while quite effective in discovering prob-
lems with the code being developed, is also time consuming for
at least two reasons. One reason is that the reviewers (who are in
most cases also developers in their own right) often spend a signifi-
cant amount of time looking at other developers’ code instead of
working on their own features and fixes. Additionally, developers
in large companies are typically busy with multiple tasks at a time,
so it may take some time before a review for the new code can be
performed, which creates a time overhead on the side of the author.
A reduction of the reviewing burden would then be beneficial for
both the authors and the reviewers, but of course such reduction
should not lead to sacrificing the final code quality.

Our contribution in this space is based on an idea that, at least
in some cases, additional changes requested by the reviewer may
be benign from the point of view of the application behavior — for
example a reviewer may suggest a more descriptive name for a
variable or a function. We have realized this idea by building a tool
that can automatically detect such benign changes, in which case
a given code revision is automatically and immediately approved
(i.e., auto-approved) with no human reviewer ever being involved.
Please note that this strategy of detecting benign changes opens up
another opportunity for improving software development efficiency
— reduction of testing time. As already mentioned earlier in this
section, in addition to a code review, a revision is also often subject
to automated testing that consumes both time (as the author has to
wait for the tests to finish) and resources (as the tests are typically
ran on dedicated server machines). If the tool can determine that a
given code revision is benign, the tests can be skipped leading to
significant time and capacity savings.

An additional complication in building a tool for reducing over-
heads related to code reviewing and testing is that large tech compa-
nies typically utilize more than one programming language.Writing
a separate tool for each language is certainly feasible, but a better so-
lution which we pursued is to create a tool that can take advantage
of similarities between different languages — implement analysis
for code components shared between different languages only once,
leaving only the language-specific parts to be implemented sepa-
rately for different languages. This not only accelerates the tool
development time but also makes the tool more extensible and
easier to maintain in the future.

The detailed contributions of this work are as follows:

• Wedescribe a design and implementation of an automated anal-
ysis tool named Last Diff Analyzer1, for discovering revisions
that only introduce benign code changes. Last Diff Analyzer is
capable of supporting multiple programming languages (cur-
rently Go and Java) through a cross-language intermediate
representation we call MAST (Meta Abstract Syntax Tree).

• We present a detailed empirical evaluation of Last Diff Ana-
lyzer’s behavior in production at Uber Technologies, Inc. —
we demonstrate effectiveness of the tool based on the analy-
sis of code review data over the period of three months and
show that the tool can auto-approve 15% of diffs that were

1Publicly available at https://github.com/uber-research/last-diff-analyzer.

subject to analysis (not all diffs were analyzed due to internal
review requirements and simple heuristics of our code review
system).

• We analyze impact of our tool on server node capacity savings
resulting from the tool’s potential to eliminate unnecessary
container deployments for E2E tests over 6 weeks. The result
indicates the tool can skip E2E tests from ∼22% of all diffs
submitted to our code review system, leading to ∼13.5% server
node capacity savings (measured by number of executed E2E
tests), compared to previous server node usage for E2E tests.

2 MOTIVATION

In order for a tool detecting benign changes to be useful in practice,
and to justify its development and maintenance, it has to be able to
detect significant enough number of benign changes. To determine
the tool’s potential we analyzed a sample of existing code diffs to
see how many of them could represent benign changes, but even
more importantly how many of those changes we believed could
be identified by a practical tool as benign. Additionally, we later
use the results of the analysis to confirm the tool’s effectiveness
(i.e., which benign diffs could be detected as such and which would
not) in practice (Section 5.1).

Consequently, we manually analyzed 100 diffs from our code
review system for Go and Java repositories in order to:

(1) categorize code changes in each diff into several different
buckets: comment, build files (e.g., dependency additions or
removals), config files (YAML / JSON), format changes, iso-
morphism (e.g., extracting constants, extracting logic to utility
functions), code removals, renamings, logging-related changes,
modifier updates (Java-only), and boxing (Java-only).

(2) estimate which of the code changes could or (likely) could not
be automatically detected by the tool — we split our estimates
into four categories:
(a) yes — this can almost certainly be auto-approved (e.g.,

comment changes and renaming a local variable)
(b) maybe — this could be auto-approved but may require

a sophisticated analysis that may be not worthwhile to
implement (if such maybe is rarely encountered) or may
be too costly to run (e.g., a more complicated change,
such as re-ordering of the branches of an if statement)

(c) hard — this could be perhaps auto-approved but in order
to do so, in addition to caveats from themaybe category,
some domain-specific knowledge that may or may not
be easily available may be required (e.g., a change to a
configuration file that does not affect a production run)

(d) no — a change that should not be auto-approved (i.e., a
change in system’s behavior)

Categorization of changes was important to understand how
many different “languages” wewould need to support, as in addition
to modifying Java and Go source files, code changes may involve
modifications to build files and config files, which are often written
in domain-specific (or even general) languages of their own. It was
an important piece of information to collect at the initial phases of
this project so that we can choose the right type of infrastructure
to support all our analysis needs.
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(a) Approval estimates for Go.
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(b) Approval estimates for Java.

Figure 1: Approval estimates for Go and Java repositories.

Estimation of the number of code changes that could be auto-
approved was even more important as it only makes sense to build a
dedicated tool if it can provide real value to its users. The results of
our estimation are shown in Figure 1a (Go) and Figure 1b (Java), and
they were quite encouraging. Based on the sample data collected,
we determined that 12% of Go code diffs (13% for Java) could be
auto-approved with high certainty and with simple static analysis.
Additional 9% of Go code diffs (4% for Java) fell into the maybe

category which we considered the upper bound for the effectiveness
of our tool (overall, 21% auto-approval rate for Go and 17% auto-
approval rate for Java), with anything that we could auto-approve
from the hard category being the proverbial cherry on top.

In Section 3 we explain how different categories of code changes
are handled by our tool and in Section 5 we discuss how close
our estimates were to the reality of the actual tool analyzing the
same set of diffs (as well as presenting auto-approval results from
running our tool in production for an extended period of time).

3 DESIGN AND IMPLEMENTATION

One of the ideas behind Last Diff Analyzer is to share the logic
across different languages since many of the features (e.g., comment
changes, variable / function renames, etc.) are independent of each
language’s unique traits. The design is then naturally split into the
following parts (shown in Figure 2):

(1) convert the source files written in different languages to a
unified intermediate representation — Meta Abstract Syntax
Tree (MAST);

(2) implement the features of the approver once on top of this rep-
resentation to automatically apply to all supported languages;

(3) handle the remaining language-specific features.

Note that while this strategy applies well to the languages used
to write application logic (such as Go and Java) it would be unlikely
to work well if we tried to, for example, unify analysis for Go and
YAML, even though YAML is also considered a (serialization) lan-
guage [6]. Analysis for “languages” that are not used to implement
application logic is handled separately as described in Section 3.4.

3.1 Meta Abstract Syntax Tree (MAST)

3.1.1 Parsing. The first step to the unified representation is to
parse the source files: converting source code to Abstract Syntax
Trees (AST). Parsing is a long-solved problem and there exists many
off-the-shelf parsing solutions for different languages. Here, in order
to reduce the burden on the development and maintenance, the
parser we choose should ideally support parsing many languages
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Swift Source*
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Figure 2: Architectural overview of Last Diff Analyzer.

under a common architecture and a unified set of APIs to access
the ASTs. We ultimately selected Tree-sitter [45] (written in plain
C with no dependencies) due to its wide range of language support
and friendly APIs, as well as its extensive set of language bindings,
including Go which we chose to implement Last Diff Analyzer.

3.1.2 Meta AST and Translation. Although Tree-sitter provides a
unified infrastructure for parsing, the AST definitions and parsing
rules are developed independently and vary greatly. Consider the
very similar code structures in Figure 3 written in Go and Java:
even though they share a lot of similarities, the generated ASTs are
noticeably different. Using tree-sitter AST as the intermediate rep-
resentation directly is then infeasible considering our design goals:
customized implementations of a feature may still be necessary for
each language due to variations in Tree-sitter ASTs.

As a result, an additional stage in the pipeline, following the
parsing step, is required to achieve further unification of the AST
representations. Such unified representation should have two some-
what conflicting properties:

• Versatility: it should be able to fully represent a number of
unique languages without losing language-specific details;

• Unification: it should be able to represent common structures
across languages in a unified way.

To achieve this, we developed a customAST representation called
Meta Abstract Syntax Tree (MAST) for representing common AST
structures in a unified format while also allowing for extensions to
accommodate unique language constructs. Going back to the two
similar code snippets in Figure 3, they will be represented in the
exactly same MAST structure as shown in Figure 4.

If a language has a unique feature that is not shared with other
languages, MAST provides the ability to “extend” its nodes via an
additional field — LangConstruct — that is able to store additional
data. This allows MAST to faithfully represent any language it
supports, while keeping as many common nodes as possible for
easier implementations of code analyses. The LangConstruct field
is most useful for features that are almost the same across differ-
ent languages and that yet exhibit subtle differences. Examples of
such features include function declarations and field declarations,
where the LangConstruct field can be used to extend the common
MAST nodes representing these features to accommodate the slight
differences each language introduces. For example, Java provides
a feature to add a modifier (e.g., public) to a method declaration,
represented as a common FunctionDeclaration node in MAST,
to denote its visibility. In such cases, the LangConstruct field of the
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method_declaration       
  type: integral_type
  name: identifier   
  parameters: formal_parameters
    formal_parameter
      type: integral_type
      name: identifier
    formal_parameter
      type: integral_type
      name: identifier
  body: block
    local_variable_declaration
      type: integral_type
      declarator: variable_declarator
        name: identifier
    return_statement 
      binary_expression
        left: identifier 
        right: decimal_integer_literal

Go: Java:

function_declaration
  name: identifier
  parameters: parameter_list
    parameter_declaration
      name: identifier
      type: type_identifier
    parameter_declaration 
      name: identifier 
      type: type_identifier
  result: identifier 
  body: block 
    var_declaration 
      var_spec 
        name: identifier 
        type: type_identifier 
    return_statement 
      expression_list 
        binary_expression 
          left: identifier 
          right: int_literal

1. func someFunc(a int, b byte) int {
2.    var a int
3.    return a + 1
4. }

1. int someFunc(int a, byte b){
2.    int a;
3.    return a + 1;
4. }

Figure 3: ASTs (slightly simplified for brevity) generated by

Tree-sitter for similar codewritten inGo and Java. Each name

is a node in the tree and the underlined names are fields of

the corresponding node.

FunctionDeclaration node representing Java methods will con-
tain a Modifiers sub-field with a publicmodifier (Figure 5). Other
unique features of Java method declarations, such as annotations,
can be added via additional sub-fields to LangConstruct. Note that
LangConstruct stores arbitrary data, and the LangConstruct field
in the same node (e.g., FunctionDeclaration) but representing a
construct in a different language will store different (or none) sub-
fields to optionally accommodate other language’s unique features.

For unique language elements that do not share similarities with
other languages, such as defer (defer statements) in Go or module
(module declarations) in Java, we create dedicated MAST nodes
with language name prefix to better distinguish them.

In total, we have designed 39 common, 24 Go-specific, and 31
Java-specific MAST nodes. A set of translation components are im-
plemented to convert Tree-sitter ASTs to MASTs for later analyses.

3.1.3 Symbolication. Having a common intermediate representa-
tion makes the implementation of multi-language code analyses
easier. However, syntactical information alone is not sufficient for
more sophisticated analyses. For example, in order to approve vari-
able renamings, we need to establish links between variables and
their declarations to check if all of them (and only them) have been
renamed to the same new identifier.

Unfortunately, Tree-sitter does not provide typing information in
the ASTs it generates. While technically we could augment MAST
with full type-checking information ourselves, it was sufficient to
implement a use-def analysis [1] to create “links” between each
identifier node and its declaration node, and then expose the symbol
information to later analysis stages. We note that this is a standard
analysis; hence, we omit the details in this paper.

3.2 Unified Feature Implementation

With the unified representation (MAST), including symbol infor-
mation, language-agnostic features can be implemented once to
have them automatically work for all languages MAST supports

FunctionDeclaration
- Name: Identifier: “someFunc”
- Parameters:

- ParameterDeclaration: 
- Type: Identifier: “int”
- Name: Identifier: “a”

- ParameterDeclaration: 
- Type: Identifier: “byte”
- Name: Identifier: “b”

- Body:
- VariableDeclaration: 

- Type: Identifier: “int”
- Name: Identifier: “a”

- ReturnStatement:
- BinaryExpression:

- Identifier: “a”
- Operator: “+”
- IntLiteral:“1”

- Returns:
- ParameterDeclaration

- Type: Identifier: “int”

Figure 4: Identical MAST structure for the code snippets writ-

ten in Java and Go in Figure 3.

FunctionDeclaration
- Name: ...
- Parameters: ...
- Body:...
- LangConstruct

- Modifiers: [“public”]
- ...

1. public int someFunc(int a, byte b){
2.    int a;
3.    return a + 1;
4. }

Figure 5: The ability to store arbitrary extensions to existing

MAST nodes for unique language features — Java modifiers

for methods.

(currently, Go and Java). One might be tempted to implement the
auto-approver by recursively comparing theMAST nodes represent-
ing the code before and after the modification via custom compare
functions (indeed, this works for some classes of modifications).
However, we note that some behavior-preserving modifications
involve multiple MAST nodes that may be far apart in a tree: for ex-
ample, renaming of a local variable affects all identifier nodes along
the use-def chain. Implementing a custom compare function for an
identifier node hence requires sophisticated logic that also tracks
and compares the structure of the tree. Instead, Last Diff Analyzer
is implemented via a series of MAST transformations. Each step
in the tranformation pipeline aims at removing a certain type of
the differences between two MASTs (e.g., differences introduced by
variable renamings can be erased by unifying the variable names
in both MASTs, which will be explained shortly). At the end of
the transformations, the two MASTs are then compared for equiva-
lence — if they are identical then the code modification was benign,
otherwise the modification must be reviewed by a developer. We
only resort to custom compare functions when the modification
is relatively scoped (i.e., only involves the current node and its
children) and a MAST transformation is not straightforward. Here,
we discuss the implementation of each feature in detail.

3.2.1 Comment / Format Changes. Formatting information (i.e. lo-
cations of source-level language constructs in the source file) is
automatically removed during parsing and never becomes part
of MAST, so a diff containing only format changes will automat-
ically have identical MASTs. For comments, we simply drop the
comment nodes in our translation layer from Tree-sitter nodes to
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MAST nodes 2. The resulting MASTs will hence be identical if only
comments or formatting are modified in a diff.

3.2.2 Unit Test File Changes. Developers write unit test files to test
specific, self-contained parts of their code and ensure that it is work-
ing as intended. It is important to note that changes made to unit
test files do not impact the actual behavior of the production code.
Additionally, the quality of the code and tests are often guarded by
other checks (such as code coverage requirements). Consequently,
in Last Diff Analyzer we preprocess the set of changed files and
safely ignore unit tests in our analysis.

3.2.3 Renaming. Variable and function renamings are the common
requests from reviewers, often to increase maintainability of the
code. Such changes do not alter the behavior of the application
when compiled, and should not require re-reviews.

The idea to handle renamings is relatively straightforward: we
simply need to erase the naming differences between two MASTs
such that the resulting MASTs are identical. One might be tempted
to disregard all identifier nodes in MASTs so the names will not
affect the comparisons. However, this will lead to auto-approving
changes that can modify code behavior. Consider the following
example (left shows the code before the change and right shows
the code after the change, differences shown in boxes):

1 const a = 1

2 func myFunc(b int) bool {

3 return b == 1

4 }

1 const a = 1

2 func myFunc(b int) bool {

3 return a == 1

4 }

Here, the only difference is in the myFunc body. Instead of com-
paring the parameter b and returning the comparison result, we
modified the code to compare the global variable a instead. These
obviously have different semantics, however, they will be treated
as equal if Last Diff Analyzer simply ignores all identifier nodes.

Another challenge is variable shadowing (i.e., declaring a variable
in inner scope that has the same name as a variable declared in
outer scope). Even though the shadowing variables carry the same
names as the shadowed variables, they must be treated as different
objects when we erase the naming differences. For example:

1 func myFunc(p int) {

2 if p == 2 {

3 var p int = 3

4 if p == 3 { · · · }

5 }

6 }

1 func myFunc(a_p int) {

2 if a_p == 2 {

3 var b_p int = 3

4 if b_p == 3 { · · · }

5 }

6 }

In this slightly more complex example, the name p is used multi-
ple times: (1) function parameter at line 1 and its first use at line 2,
then (2) local variable declaration at line 3 shadows the function
parameter, and is later used at line 4. This behavior-preserving diff
renames the parameter and its use with a prefix “a_” and the shad-
owing local variable p declared at Line 3 and its use with a prefix
“b_”. Unless shadowing is handled correctly, this code change could
be considered behavior-altering if we naively compare the MASTs.

Recall that the symbol information computed during MAST con-
struction “links” each identifier node in MAST to its corresponding

2There are certain comments that carry special meanings, e.g., license headers, that
should be properly reviewed if changed. Last Diff Analyzer is deployed internally
where all code is considered proprietary. However, in other deployments it can be
extended to preserve certain types of comment nodes during translation, which will
lead to rejection if such comments are changed in the diff.

declaration node, where shadowing is properly handled in the use-
def analysis. For example, the first use of variable p at line 2 will
be linked to the parameter declaration of p at line 1. Similarly, the
use of the shadowing local variable p at line 4 will be linked to its
declaration at line 3, instead of the parameter declaration at line 1.

With these established links, we can rename all objects (which
could encompass multiple identifier nodes in a MAST) in the pro-
gram according to a stable naming scheme (e.g., OBJ_1, OBJ_2, · · · ,
where the order depends purely on the program structure) to erase
the naming differences. To do this, Last Diff Analyzer first rewrites
all identifiers in the declarations to be $_OBJ_n (illegal prefix $

added to avoid collisions with existing identifiers) for the n-th dec-
laration in a package, ordered first by the order of the files in the
diff change set, relying on the diff tool [35] itself to handle file
renaming, and then declarations within a file. This is illusrated
conceptually as the left program below:

1 func $_OBJ_1($_OBJ_2 int) {

2 if p == 2 {

3 var $_OBJ_3 int = 3

4 if p == 3 { · · · }

5 }

6 }

1 func $_OBJ_1($_OBJ_2 int) {

2 if $_OBJ_2 == 2 {

3 var $_OBJ_3 int = 3

4 if $_OBJ_3 == 3 { · · · }

5 }

6 }

Then, in a second pass, we follow the use-def chains to update all
remaining identifiers to the rewritten declaration identifiers. After
such renamings, the resulting MASTs before and after the code
changes will be identical (i.e., the program on the right).

If the variable at line 4 is accidentally renamed to a_p (shown
in boxes), i.e., the use of shadowing variable is changed to use the
function parameter, our naming scheme will capture this fact:

1 func myFunc(a_p int) {

2 if a_p == 2 {

3 var b_p int = 3

4 if a_p == 3 { · · · }

5 }

6 }

1 func $_OBJ_1($_OBJ_2 int) {

2 if $_OBJ_2 == 2 {

3 var $_OBJ_3 int = 3

4 if $_OBJ_2 == 3 { · · · }

5 }

6 }

Hence, the resulting MASTs will be different (one with $_OBJ_3

and one with $_OBJ_2 at Line 4), and this diff will be rejected.
Note that “public” (or in Go’s sense, “exported”) declarations that

are visible across packages might be used somewhere else that are
not changed by the diff, and it could break other packages if not
handled properly. Therefore, Last Diff Analyzer conservatively only
approves renaming private (file- or package- local) declarations.

3.2.4 Constant Additions / Removals. It is often a bad practice to
leave bare literal numbers or string literals (particularly if they are
used more than once) in the program since it hinders readability.
Another common request from reviewers is to extract such literals
to constants with more meaningful names. For example:

1 func throttle(cnt int) bool {

2 return cnt < 10

3 }

1 const maxRetry = 10

2 func throttle(cnt int) bool {

3 return cnt < maxRetry

4 }

Here, a magic number 10 denotes the maximum number of re-
tries for a given time period (code on the left). A bare literal number
makes it hard to understand the intentions, hence a reviewer re-
quested to add a constant value with a name maxRetry for better
readability (code on the right). These type of changes do not af-
fect application behavior, and in fact will be erased by compiler
optimizations (constant propagation [1]).
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In order to auto-approve such changes, we adopt the ideas of
constant propagation. Each use of the constant will be replaced with
their corresponding value with the help of the symbol information,
and the constant declarations will be removed from the tree. After
such rewrites, the code on the right in the above example will be
conceptually equivalent to the one on the left.

Similar to renamings, such rewrites are conservatively only done
for file- and package- local constants.

3.2.5 Logging-Related Changes. Logging activities do not manifest
themselves at the user level and it may be safe to approve some
logging-related changes. In our sampled dataset, we have identified
a number of diffs containing logging-related changes (e.g., changing
the log levels, modifying the log messages, removing unnecessary
logs etc.) that could be auto-approved.

The first step is to identify which program parts are actually
responsible for logging activities. This may appear to be a simple
task. However, MAST is not equipped with a type-checking algo-
rithm (only basic use-def analysis), making it difficult to trace a
function / method call to its declaration to identify logging calls.
Consider the following logging call in Go (zap [24] is a popular
logging framework in Go):

h.logger.Error("error!", zap.Error(err))

The h variable is an object whose struct type is defined in
the same file containing a “logger *zap.SugaredLogger” field.
Consequently, in this case we could trace the method call to its
definition. However, the type information is not always available:
if the type of h is defined in another package, we would not be
able to confirm the origin of the method (for best performance and
ease of implementation, our basic use-def analysis only tracks type
information that exists in the modified set of files).

Due to lack of complete typing information, a heuristic is de-
veloped to identify logging calls in Go. Specifically, a method is
identified to be from logging frameworks iff:

• the name is in { Debug, Info, Warn, Error }3, and
• it is either (1) called with only one string argument, or (2) called
with more than one argument, where the first argument is
a string and one of the other arguments is a zap formatting
function (e.g., zap.String, zap.Int etc.).

After identifying logging calls, a naive approach is to remove
all of them in the program to eliminate all logging-related changes.
However, an arbitrary change to a logging call can have side-effects:

(1) a function call used as an argument can change the execution
of other parts of code (e.g., by inserting a piece of data into a
globally available data structure)

(2) a pointer dereference (Go-only) or a method execution on null
pointer value can cause a crash.

Therefore, special considerations must be taken when approving
logging-related changes that contain arbitrary function calls or
pointer dereferences. In summary, Last Diff Analyzer only approves
the following changes to the logging calls:

(1) replacement of one logging method with another (e.g., from
h.logger.Debug to h.logger.Error)

3We conservatively exclude DPanic, Panic and Fatal functions as they are rarely
used and they can lead to program terminations that may change application behavior.

(2) removal, addition or modification of a logging call arguments
that do not have side effects (e.g., literals, or functions identi-
fied using a pre-determined allowlist).

Due to this, Last Diff Analyzer implements this feature using
cutsom compare functions. When comparing two logging call ex-
pressions, we will ignore the log levels and other side-effect-free
arguments (literals or pre-determined function calls such as Go’s
zap.String(...) or Java’s String.format(...)). Instead, we
only strictly compare the other arguments (that may have side
effects) in the order of their appearances. We also handle additions
or removals of logging statements – Last Diff Analyzer approves a
change if one tree contains a logging statement with no side effects
even if the other tree does not.

For Java, the logging conventions make the identification of
logging calls a little simpler: each class usually defines a private
static final logger field, and methods inside this class will
simply use the static logger throughout the execution. This guaran-
tees that Last Diff Analyzer is able to find the type information of
each logger instance, and we then apply strict checking for it (must
be in an allowlist consisting of well-known types from logging
frameworks). The rest of the process is the same as Go.

3.3 Language-Specific Feature Implementation

Althoughmost of the features of Last DiffAnalyzer are implemented
in a unified way, there are inevitably unique language features that
have to be handled separately.

One specific example is modifiers from Java (final, static,
etc.) [21] which are used to denote accesses (access modifiers such
as public, private, etc.) or other attributes (non-access modifiers
such as static, final, etc.). Multiple modifiers (one access mod-
ifier and multiple non-access modifiers) can be added to a single
declaration. However, the ordering of the modifiers does not change
the semantics. Hence, when comparing two field / function decla-
rations, the modifiers LangConstruct will be converted to sets to
remove the ordering for comparisons.

Moreover, adding a final modifier to a field / function decla-
ration imposes stricter restrictions (making the declaration non-
changeable), which can be considered a “safe” change. To support
this, we intentionally ignore the final modifier in the MAST after

the diff when comparing against the MAST before the diff. Note
that the reverse should not be done — removals of final could lead
to subtle bugs that must be reviewed by developers.

3.4 Basic Approvers

A diff may contain changes to any files inside a repository with
many auxiliary files written in other config / interface definition /
serialization / query languages. For example, developersmay submit
a diff that renames a variable in the application logic written in Go,
while also adding comments to the interface definitions written in
Thrift™ [10]. To avoid rejecting such diffs, Last Diff Analyzer is
equipped with customized basic approvers for simple features such
as comments and formatting. We do not try to convert them to a
unified format since (1) the features are relatively simple, and (2)
these languages are arguably simpler and less similar to one another
and to languages like Java and Go, compared to the similarities
between one imperative general programming language to another.
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3.4.1 Build Files (Bazel™ [22]). The most interesting basic ap-
prover is the Bazel™ one. Bazel™ is a build system designed for
large-scalemulti-languagemulti-platform projects.While Bazel™ al-
low complex logic written in a subset of the Python language (see
Starlark below), the majority of build configurations are written as
a series of declarative “rules” that specify how source file(s) should
be built (e.g., go_library for building a Go library) or tested (e.g.,
go_test for building a Go test suite). Most rules also provide a deps
field that allows developers to specify dependent rules that must be
built and linked against the current rule. From our observations in
the sampled dataset (described in Section 2), there is a fair amount
of diffs that remove dead dependencies or add a new dependency.
Such changes are often automatically done by build file generators
(such as gazelle [23]) and are considered safe from review’s perspec-
tive, assuming the code still compiles (which will often be checked
by continuous integration system within the code review system).
Moreover, any changes to test rules are also considered safe.

Implementing such features is relatively straightforward: a cus-
tom Bazel AST comparator is implemented to (1) ignore differ-
ences between deps fields for selected rules (e.g., go_library,
java_library, etc.) on two ASTs, and (2) ignore certain rules (e.g.,
go_test, java_test, etc.) altogether.

3.4.2 Thri�™ [10], Starlark [20], SQL [25], Protobuf [19], Gomod [18],

YAML [6]. Apart from the languages discussed above, Last Diff An-
alyzer also offers basic support for interface definition languages
such as Thrift™ and Protobuf, configuration languages such as Star-
lark and Gomod, serialization languages such as YAML, and data
query language SQL. We note that all of these languages share very
little similarities with languages for writing applications logic like
Go and Java. Hence, we simply utilize off-the-shelf parsers and then
rewrite their ASTs by removing the comment nodes (for approving
comment changes) and position-information (for approving format
changes). Finally, we compare the ASTs strictly for equality.

4 APPLICATIONS

Last Diff Analyzer is designed to work with any code review /
revision system. The only required input is the source files before
and after the code changes, and it will output a JSON-encoded result
indicating the outcome of the analysis (Approve, Reject, or Error
with an error message). This makes Last Diff Analyzer modular: it
can be integrated with different code review systems, and its output
can be used in various contexts. As an initial deployment, Last Diff
Analyzer has been integrated with our code review system and
applied to automated code reviews. We also explored applying it to
skipping resource-intensive tests (e.g., E2E tests). In contrast to unit
tests, which target the testing of individual functions or classes,
E2E tests aim to evaluate the entirety of the application, demanding
a higher allocation of resources. Section 5 shows the potential cost
savings that can be achieved by skipping resource-intensive tests
when there are no behavior-altering code changes in a diff.

Please note that it may depend on a specific application which
diffs the Last Diff Analyzer should approve, that is which diffs are
“safe”, and which it should not. For example, changing a logging
message may be considered “safe” for automated code-approvals.
However, E2E test outcome may depend on specific log messages

being present, leading to different test results if a message is modi-
fied. Due to the modular design of Last Diff Analyzer’s features, we
expose a battery of control flags, which independently control if
a certain feature is enabled, making it possible to cater to varying
requirements for different applications. Specifically, logging-related
approvals are disabled for skipping E2E tests.

Another notable difference in our deployment for automated
code approvals and skipping E2E tests is how we treat rebase diffs.
A process of rebasing involves updating code that the diff was orig-
inally based on to the most recent version of the code found in
the code repository (repository might have been modified by other
developers after the diff in question was created). We consider a
diff to be a rebase diff if the code updated as a result of a rebase
and the code changes present in the diff do not overlap. In other
words, a rebase diff does not bring any more logical changes to
the existing revision. Automated code approval using Last Diff An-
alyzer is integrated with our code review system, which already
employs heuristics to approve rebase diffs, without running Last
Diff Analyzer at all. However, in skipping E2E tests, Last Diff An-
alyzer is separately executed by the E2E entry point script. The
script decides whether to continue the test execution based on the
results from Last Diff Analyzer. Under this setting, all diffs will be
evaluated by Last Diff Analyzer, including rebase diffs which will
be auto-approved (since they do not contain any changes).

4.1 Code Reviews

The primary practical use of Last Diff Analyzer is to facilitate auto-
mated approvals for code revisions that do not change the system’s
behavior. This expedites the deployment of code changes to pro-
duction and, perhaps even more importantly, saves the valuable
time of both authors and reviewers.

However, it is necessary to impose additional restrictions, as
there may be compliance requirements to consider during the code
review process that go beyond purely technical aspects. Specifically,
a diff is only analyzable if the following criteria are met (otherwise
Last Diff Analyzer will not be invoked by the code review system):

• The diff is not the very first diff in the revision;
• A required human reviewer (i.e., the owner of the code paths
the revision modifies) has approved the revision before (not
necessarily the immediately preceding diff – the most likely
candidate here is the first diff);

• The immediately preceding diff is approved by any developer
(not necessarily the code owner) or the tool itself, i.e., an ap-
proval is present between the immediately preceding diff and
the current diff.

These requirements are to ensure (1) at least one required re-
viewer has approved this revision before, and (2) Last Diff Analyzer
is only approving changes that preserve correct (previously ap-
proved) behavior of the code. We note that these are due to internal
company review requirements instead of a technical choice.

4.2 Skipping Resource-Intensive Tests

E2E test pipelines are often deployment-based: a few test instances
are deployed with the code changes in staging / production for each
diff, and the E2E tests will be executed against the test instances.
Every instance has a lifespan of up to one hour, which imposes a
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(a) Actual approvals for Go.
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(b) Actual approvals for Java.

Figure 6: Actual auto-approvals for Go and Java repositories.

significant demand on resources during this process. Thus, it can
be inefficient to re-run the same set of E2E tests when a diff does
not lead to a change in system behavior (the execution results will
be the same). Therefore, in addition to automated code approvals,
another application of Last Diff Analyzer is to skip E2E tests for
behavior-preserving diffs. By doing this, we not only improve de-
veloper experience by reducing the time it takes for their code to be
considered production-ready (all tests must pass in order for this to
happen), but also free up server resources that can be better utilized
elsewhere. In this application, we do not have the additional restric-
tions imposed by the code review system. Hence, all submitted diffs
are subject to analysis by Last Diff Analyzer. However, Last Diff
Analyzer still rejects a diff directly if it is the first diff within a revi-
sion to ensure that E2E tests are run at least once. Moreover, even
if a diff is approved by Last Diff Analyzer, the E2E tests may not be
skipped if the tests for the immediately preceding diff have failed.
While one would expect a diff with no behavior-altering changes
to fail the E2E tests whenever the previous diff fails them, this is to
ensure E2E tests will be rerun if the failure is due to infrastructure
problems and not the code change itself.

5 EVALUATION

To determine the effectiveness of Last Diff Analyzer, we performed
an evaluation on the sampled dataset described in Section 2 (results
are presented in Section 5.1). Additionally, we have deployed Last
Diff Analyzer in production to both auto-approve diffs (results
presented in Section 5.2) and evaluate E2E test savings (results
presented in Section 5.3), and have been continuously tracking and
gathering metrics to further prove its effectiveness.

5.1 Sampled Dataset

Last Diff Analyzer is first evaluated on the sampled dataset de-
scribed in Section 2, consisting of 100 code revisions each on Go
and Java repositories. For each code revision, all configuration flags
(described in Section 4) are enabled for Last Diff Analyzer, and
we collect the approval rates for each buckets we have manually
categorized (yes,maybe, and hard).

Figure 6a shows the actual approval rates in Go repository, along
with the original estimates. Last Diff Analyzer has successfully
approved all yes code revisions, mostly from Comment and Re-

name features. There are two code revisions auto-approved under
Build File, since they contain only simple dependency additions /
removals, which are handled by our basic Bazel approver. The only
approved revision under Isomorphism replaces an unused variable
with “_”, which is conceptually equivalent to renaming a variable.
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Figure 7: Weekly approval rate on Go and Java repositories.

The most interesting part lies in the rejected cases. The rejected
Build File cases contain modifications to other aspects of Bazel
build files other than dependency management, and are deemed
semantically-different by Last Diff Analyzer. The rejected cases in
Config File are obvious: they contain changes on YAML files, mak-
ing it hard for Last Diff Analyzer to reason if the changes are safe.
The most surprising rejection is the Format case. This case includes
reordering of import statements, which our tool currently lacks
support for. Another interesting rejected case involves replacing a
deprecated API with the latest version. While technically we can ap-
prove such cases by defining a custom mapping of deprecated API
with its latest version, we concluded that maintaining such a (large)
list for countless libraries will be challenging, if not impossible.
However, special cases may be added to Last Diff Analyzer during
migration of popular common library APIs. The rest of the rejected
cases may also be supported, but require more sophisticated analy-
sis. For example, one rejected diff removes a (presumably) unused
helper function. Call graphs [1] must be constructed in Last Diff
Analyzer in order to approve such cases.

The results in Java repository are similar (Figure 6b). Last Diff
Analyzer is able to auto-approve all but one yes cases (under Re-
name), due to lack of support for Scala language. The rejected cases
also include removing (presumably) unused method(s), but one
interesting rejected diff reorders the parameters of a method dec-
laration. Supporting such patterns requires Last Diff Analyzer to
reason beyond the scope of the method declaration to determine
this change is “safe”: the arguments of every call site must also
be reordered accordingly. Surprisingly, Last Diff Analyzer failed
to approve any of the logging-related cases. We note that this is
due to our conservative logic in approving logging-related changes
(Section 3.2.5): only changes to literals and side-effect-free func-
tion calls (determined by an allowlist) in the logger arguments are
allowed. All rejected logging-related cases either contain custom
formatting function calls, or use a custom error class for logging
instead of the standard logging frameworks we support.

No false positives are observed in this evaluation. For the false
negatives discussed above, we stress that the design goal is not to
cover all possible cases, but to build an extensible multi-language
foundation with maintainable logic to support most code changes.
We leave more feature implementations as future work, if sufficient
evidence shows a feature is a common pattern in daily development.

5.2 Code Reviews

Wehave deployed and enabled Last Diff Analyzer in our code review
system and collected the approval rates for 12 weeks on Go and
Java repositories. As shown in Figure 7, the data we collected is
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Figure 8: Weekly approval rate and capacity savings on Go

repository for skipping E2E tests.

consistent with our evaluations on the sampled dataset: on average
approximately 15% of the analyzed diffs (recall that not all diffs are
subject to analysis by Last Diff Analyzer for code reviews) are auto-
approved weekly for both Go and Java. We attribute the success
of Last Diff Analyzer to our data-driven approach. Much of the
engineering effort would have been wasted if not for the insights
gathered from our sampled dataset.

5.3 Skipping Resource-Intensive Tests

We have integrated our Last Diff Analyzer in our E2E test pipelines
for skipping resource-intensive tests. Before each E2E test, Last Diff
Analyzer will be executed to determine if the current diff requires
further testing. Due to internal deployment requirements, we are
only able to collect data for 6 weeks on Go repository at the time of
writing. However, we note that weekly approval rates for Java will
likely be similar, as evidenced by our deployment for code reviews.

Overall, Last Diff Analyzer is able to auto-approve ∼22% of all
diffs, as shown in Figure 8. The approval rate is different from our
deployment for code reviews (Section 5.2). However, we note that
the approval rates are not comparable due to different deployment
settings. For code reviews, the additional restrictions imposed by
our code-hosting platform (Section 4.1) naturally excluded a number
of diffs that may be auto-approved from technical perspective (e.g.,
rebase diffs, or diffs do not have a preceding approvals from required
reviewer(s)). The approval rate is calcualted based on the diffs
that are eventually analyzed by Last Diff Analyzer. For skipping
E2E tests, such restrictions are not present and Last Diff Analyzer
analyzes all diffs submitted to our code-hosting platform.

Note that each diff may trigger different number of E2E tests,
and the E2E tests may not be skipped if the immediately preceding
E2E tests failed. This leads to differences between diff approval
rate and server node capacity savings. Overall, we have observed
approximately 13.5% capacity savings, measured by number of
executed E2E tests, relative to the node usage for E2E tests if Last
Diff Analyzer were not enabled during 6 weeks of deployment.

5.4 Performance

Last Diff Analyzer requires source files before and after code re-
visions as input. However, our code review system only supports
retrieving patch files [44] that contain code change information
only, which has to be applied to unmodifed files available in the
Last Diff Analyzer’s execution environment. This introduces a no-
ticeable overhead to our workflow: API calls and applying patches
to a large-scale git repository is a time-consuming process.
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Figure 9: P50, P75, and P90 of overhead of Last Diff Analyzer

over 6 weeks.

To gain insights into the overhead of Last Diff Analyzer’s inte-
grations, we have collected the cost of running Last Diff Analyzer
in our E2E pipelines for 6 weeks. Figure 9 shows the P50, P75, and
P90 of the overhead for each week. A noticeable overhead of 30-60s
is indeed recorded over the time period. However, it is worth men-
tioning that each E2E test pipeline requires hours of deployment in
production. With 22% approval rate and 30s overhead, we can still
expect to have a significant overall net gain. Moreover, it is possible
to run Last Diff Analyzer concurrently with the tests and terminate
the process early if Last Diff Analyzer approves the code revision,
hence eliminating the overhead for maximum savings. It is more
difficult to contrast Last Diff Analyzer’s runtime overhead with
the time savings and improved developer productivity when it’s
applied for diff auto-approval, but it is worth noting that anecdotal
feedback we received from the developers after Last Diff Analyzer
was deployed was very positive.

6 RELATED WORK

Significant prior research exists on detecting code refactorings.
Either pure refactorings (code changes involving no change in
program behavior, like the diffs Last Diff Analyzer is meant to auto-
approve), or refactorings in combination with other, semantic, code
changes (often across long timelines to study code evolution).

A number of AST-based analyses [9, 29, 30, 38, 42, 43, 46, 47, 49–
51] have been applied to this problem (often involving the con-
struction of complex higher-level representations such as e.g. DBs
of logic facts between program entities [38] or entity-level di-
agrams [49, 50]). Alternatively, some approaches apply similar
matching instead at the level of the program’s Control Flow Graph
(GFG) [3, 34]. Finally, heavier-weight static analysis methods exist
for checking semantic equivalence between two programs, such
as [4, 8, 17, 28, 32, 36, 39]. These methods are more robust to un-
known refactorings, but at the cost of limited scalability. For ex-
ample, [39] uses under-constrained symbolic execution to verify
that two different functions produce the same output under each
possible input, but this requires the functions in question to only
perform operations that it can properly express symbolically (e.g.,
no floating point operations) and requires expensive queries to an
SMT solver which can often timeout for complex path conditions.

In terms of applications, we also note that refactoring-detection
tools have been previously turned to both the problem of assisted
code review [2, 11, 12], as well as test selection [7, 48].

Additionally, there exists just as much, if not more, prior work
on the related problem of code clone detection — that is, detecting
similar code within the same version of a particular codebase, rather
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than before and after a code change (e.g. [5, 26, 27, 31, 33, 40]). This
work offers some techniques which could also be applicable to the
problem of detecting code refactorings.

From the long list above, we contrast three representative ap-
proaches, which are among those closest to our own:

REFDIFF 2.0. Silva et al. developed REFDIFF 2.0 [42] as multi-
language refactoring detection tool based on a commonAST-derived
representation: Code Structure Tree (CST). REFDIFF 2.0 is focused
on tracking code evolution through various refactorings, and is not
concerned with identifying pure refactorings preserving program
behavior. This results in two key differences between their approach
and ours. First, they permit some types of refactorings (e.g. public
API signature changes), which we would consider behavior altering
and thus want Last Diff Analyzer to mark as semantic changes.
Second, CST is designed to represent only entity-level (e.g. class,
method/function) information about the codebase, while compar-
ison between the bodies of functions is delegated to a variant of
Term Frequency–Inverse Document Frequency (TF-IDF [41]). This
is a generic text comparison method, based on token frequencies
and using a similarity threshold, which means either syntactically
small but semantically significant changes must be tolerated (for
a non-zero threshold) or even identifier renamings will result in
a mismatch (if the threshold is zero). In the evaluation from [42],
RefDiff 2.0 exhibits 96% precision and 80% recall on a common Java
refactoring detection benchmark.

RMiner Tsantalis et al.’s RMiner [46, 47] provides an AST-based
statement matching algorithm that determines refactoring candi-
dates without requiring user-defined thresholds. It uses two tech-
niques to be resilient to code restructuring during refactoring: ab-
straction, which deals with changes in statements’ AST node kinds
due to refactorings, and argumentization, which deals with changes
in sub-expressions within statements due to parameterization. To-
gether, these techniques can detect identifier renaming and constant
extraction, as well as track statements through more complex re-
orderings. On top of those techniques, and similar to our approach,
they include particular detection rules that cover 15 representa-
tive refactoring types. Like REFDIFF 2.0, the goal is code evolution
tracking, with the algorithm cascading from more to less precise
statement matching rules. As presented, this matching allows for
false positives and considers non-pure refactorings as true positives.
Additionally, the tool as implemented is specific to Java. Thus, while
some of the techniques could be used to improve Last Diff Analyzer,
RMiner would not be a direct replacement.

DiffKempMalík et al.’s DiffKemp [34], on the other hand, has
a very similar objective to our own: to detect semantics-altering
changes. In particular, DiffKemp has been used to check that changes
between two different Linux Kernel minor versions do not alter the
semantics of Kernel Application Binary Interface (KABI) functions,
which are meant to be stable across the lifetime of a single major
release. Like our approach, they apply some normalizing rewrites
and then recursively compare code representations. But, unlike our
approach, this is done at the level of CFG, rather than AST. This
allows the tool to detect certain classes of refactorings which result
in very different source code but identical or nearly-identical CFG
(e.g. changing a for loop construct into a while loop with equiva-
lent bounds). One immediate consequence of this is that it requires
building the code before and after the change for comparison, which

is significantly more expensive than our approach, requiring only
parsing the changed files. Additionally, DiffKemp is implemented
exclusively for C, unlike our multi-language approach.

Many of the analyses above can detect complex refactoring pat-
terns Last Diff Analyzer does not yet support (such as outlining
or inlining of fragments of function bodies), as well as more com-
plex compositions or chains of refactorings. On the other hand,
a significant number of these tools are more concerned with ei-
ther understanding the history of refactorings within a codebase
(ignoring behavior affecting changes interspersed within refactor-
ings for the sake of tracing the evolution of certain parts of the
code) or, conversely, focus on proving that the code before and after
the change behaves exactly equivalently. As shown in Section 4,
what constitutes a relevant change depends on the use case for the
tool, and configurability of enabled features is key, in addition to
generalizable infrastructure across languages.

We believe the description of Last Diff Analyzer, combined with
our initial study on the kinds of diffs that would be auto-approvable,
will be of interest to the broader refactoring detection and software
engineering community. As will our industrial evaluation, showing
the significant impact that even our initial library of refactoring
patterns had in terms of saved developer time and C.I. resources.

Additionally, despite the obvious benefits, no similar tooling we
are aware of enjoys broad adoption yet in the industrial setting. The
closest existing tool that could potentially serve in a similar capacity
to ours is Semantic [13]. It is a multi-language program analysis
toolkit, also based on Tree-sitter [45], that can theoretically report
semantic equivalence between two code revisions. It is not designed
for situations when the code is not exactly the same but the changes
are still benign. Also, unfortunately, as of the time of writing this
paper (and also of the time our own project was started) the diffing
functionality of Semantic is disabled 4, seemingly indefinitely.

7 CONCLUSIONS

In this paper, we have presented a multi-language AST represen-
tation called Meta Abstract Syntax Tree (MAST) that is able to
represent common language features in a unified format, while al-
lowing extensions for unique language traits, forming a foundation
for multi-language program analysis. On top of this foundation,
we have implemented Last Diff Analyzer— an automated code ap-
prover for detecting behavior-preserving code changes for both Go
and Java. Features of Last Diff Analyzer include logging-related
changes, variable renaming, constant additions / removals, and
more. Evaluations from production show that Last Diff Analyzer
can automatically approve up to 22% of the diffs it analyzes. When
applied to skip resource-intensive E2E tests triggered by submitted
diffs, Last Diff Analyzer is able to reduce ∼13.5% server node ca-
pacity usage, compared to capacity usage for E2E tests if Last Diff
Analyzer were not enabled.
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